精英家教网 > 高中数学 > 题目详情
1.设f(x)=1g$\frac{1+{2}^{x}+{3}^{x}+{4}^{x}•a}{4}$,其中a是实数,若f(x)当x∈(-∞,1]时有意义,求a的取值范围.

分析 由题意可得,当x∈(-∞,1]时,$\frac{1+{2}^{x}+{3}^{x}+{4}^{x}•a}{4}$>0,即当x∈(-∞,1]时,a•4x+3x+2x+1>0,分离参数a,利用函数的单调性求出g(x)=-[$(\frac{3}{4})^{x}+(\frac{1}{2})^{x}+(\frac{1}{4})^{x}$]在x∈(-∞,1]上的最大值得答案.

解答 解:由题意可知,当x∈(-∞,1]时,$\frac{1+{2}^{x}+{3}^{x}+{4}^{x}•a}{4}$>0,
即当x∈(-∞,1]时,a•4x+3x+2x+1>0,
∴a>-[$(\frac{3}{4})^{x}+(\frac{1}{2})^{x}+(\frac{1}{4})^{x}$]在x∈(-∞,1]上恒成立.
∵函数g(x)=-[$(\frac{3}{4})^{x}+(\frac{1}{2})^{x}+(\frac{1}{4})^{x}$]在x∈(-∞,1]上为增函数,
∴$g(x)_{max}=g(1)=-\frac{3}{2}$.
∴$a>-\frac{3}{2}$.
故a的取值范围为($-\frac{3}{2},+∞$).

点评 本题考查函数的定义域及其求法,考查数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+a(x2-x)
(I)若a=-1,求f(x)的极值;
(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;
(Ⅲ)若f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2),AB的中点为C(x0,0),求证:f′(x0)≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).
(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?
(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)间的考生大约有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=|log3x|的图象与直线l1:y=m从左至右分别交于点A,B,与直线${l_2}:y=\frac{8}{2m+1}(m>0)$从左至右分别交于点C,D.记线段AC和BD在x轴上的投影长度分别为a,b,则$\frac{b}{a}$的最小值为(  )
A.$81\sqrt{3}$B.$27\sqrt{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将函数y=f(x)的图象上的所有点向左平行移动$\frac{π}{10}$个单位长度,再把所得各点的横坐标伸长为原来的2倍(纵坐标不变),所得图象的函数解析式为y=cosx,则y=f(x)是(  )
A.周期为4π的奇函数B.周期为4π的偶函数
C.周期为π的奇函数D.周期为π的非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若sinα=$\frac{4}{5}$,且α是第二象限的角,则tanα+cotα=-$\frac{25}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?(  )
A.2$\frac{2}{17}$B.2$\frac{3}{17}$C.2$\frac{5}{17}$D.2.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,y=f(x)是可导函数,直线l:y=kx+3是曲线y=f(x)在x=1处的切线,若h(x)=xf(x),则h(x)在x=1处的切线方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[-1,5]上任取一个实数b,则曲线f(x)=x3-2x2+bx在点(1,f(1))处切线的倾斜角为钝角的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案