分析 由sinα的值及α为第二象限的角,利用同角三角函数间的基本关系求出cosα的值,再由sinα和cosα的值,利用同角三角函数间的基本关系弦化切即可求值.
解答 解:∵sinα=$\frac{4}{5}$,且α是第二象限角,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
则tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,cotα=-$\frac{3}{4}$,
∴tanα+cotα=(-$\frac{4}{3}$)+(-$\frac{3}{4}$)=-$\frac{25}{12}$.
故答案为:-$\frac{25}{12}$.
点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,同时注意角度的范围,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{14}}{3}$ | B. | -$\frac{\sqrt{6}}{3}$ | C. | ±$\frac{\sqrt{14}}{3}$ | D. | ±$\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -32 | B. | 32 | C. | -96 | D. | 96 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 2 | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.1 | B. | 0.2 | C. | 0.4 | D. | 0.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com