精英家教网 > 高中数学 > 题目详情
16.已知F1(-c,0)、F2(c、0)分别是椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b^2}$=1(0<b<a<3)的左、右焦点,点P(2,$\sqrt{2}$)是椭圆G上一点,且|PF1|-|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.

分析 (1)根据椭圆的定义,求得丨PF1丨=$\frac{3}{2}$a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2-c2=4,即可求得椭圆方程;
(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.

解答 解:(1)由椭圆的定义可知:|PF1|+|PF2|=2a.由|PF1|-|PF2|=a.
∴丨PF1丨=$\frac{3}{2}$a=3|PF2|,
则$\sqrt{(2+c)^{2}+2}$=3$\sqrt{(2-c)^{2}+2}$,化简得:c2-5c+6=0,
由c<a<3,
∴c=2,
则丨PF1丨=3$\sqrt{2}$=$\frac{3}{2}$a,则a=2$\sqrt{2}$,
b2=a2-c2=4,
∴椭圆的标准方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;
(2)由题意可知,直线l不过原点,设A(x1,x2),B(x2,y2),
①当直线l⊥x轴,直线l的方程x=m,(m≠0),且-2$\sqrt{2}$<m<2$\sqrt{2}$,
则x1=m,y1=$\sqrt{4-\frac{{m}^{2}}{2}}$,x2=m,y2=-$\sqrt{4-\frac{{m}^{2}}{2}}$,
由$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴x1x2+y1y2=0,即m2-(4-$\frac{{m}^{2}}{2}$)=0,
解得:m=±$\frac{2\sqrt{6}}{3}$,
故直线l的方程为x=±$\frac{2\sqrt{6}}{3}$,
∴原点O到直线l的距离d=$\frac{2\sqrt{6}}{3}$,
②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,
则$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y=kx+n}\end{array}\right.$,消去y整理得:(1+2k2)x2+4knx+2n2-8=0,
x1+x2=-$\frac{4kn}{1+2{k}^{2}}$,x1x2=$\frac{2{n}^{2}-8}{1+2{k}^{2}}$,
则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=$\frac{{n}^{2}-8{k}^{2}}{1+2{k}^{2}}$,
由$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴x1x2+y1y2=0,故$\frac{2{n}^{2}-8}{1+2{k}^{2}}$+$\frac{{n}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0,
整理得:3n2-8k2-8=0,即3n2=8k2+8,①
则原点O到直线l的距离d=$\frac{丨n丨}{\sqrt{1+{k}^{2}}}$,
∴d2=($\frac{丨n丨}{\sqrt{1+{k}^{2}}}$)2=$\frac{{n}^{2}}{1+{k}^{2}}$=$\frac{3{n}^{2}}{3(1+{k}^{2})}$,②
将①代入②,则d2=$\frac{8{k}^{2}+8}{3(1+{k}^{2})}$=$\frac{8}{3}$,
∴d=$\frac{2\sqrt{6}}{3}$,
综上可知:点O到直线l的距离为定值$\frac{2\sqrt{6}}{3}$.

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,点到直线的距离公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若sinα=$\frac{4}{5}$,且α是第二象限的角,则tanα+cotα=-$\frac{25}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},则“x∈A∪B“是“x∈C“的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若$\frac{|MA|}{|AF|}$=2,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[-1,5]上任取一个实数b,则曲线f(x)=x3-2x2+bx在点(1,f(1))处切线的倾斜角为钝角的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,首项a1=1,若数列{an}的前n项之积为Tn,且T5=1024,则该数列的公比的值为(  )
A.2B.-2C.±2D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{x}^{2},x<0}\end{array}\right.$,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1,x2,则e${\;}^{{x}_{1}}$•e${\;}^{{x}_{2}}$的最大值为(  )
A.$\frac{1}{{e}^{2}}$B.2(ln2-1)C.$\frac{4}{{e}^{2}}$D.ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:

假设甲、乙两种酸奶独立销售且日销售量相互独立.
(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);
(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率;
(Ⅲ)设X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC中,∠C=90°,且CA=3,点M满足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,则$\overrightarrow{CM}$•$\overrightarrow{CA}$的值为(  )
A.3B.6C.9D.不确定

查看答案和解析>>

同步练习册答案