分析 (1)根据椭圆的定义,求得丨PF1丨=$\frac{3}{2}$a=3|PF2|,根据点到直线的距离公式,即可求得c的值,则求得a的值,b2=a2-c2=4,即可求得椭圆方程;
(2)当直线l⊥x轴,将直线x=m代入椭圆方程,求得A和B点坐标,由向量数量积的坐标运算,即可求得m的值,求得O到直线l的距离;当直线AB的斜率存在时,设直线方程,代入椭圆方程,由韦达定理及向量数量积的坐标运算,点到直线的距离公式,即可求得O到直线l的距离为定值.
解答 解:(1)由椭圆的定义可知:|PF1|+|PF2|=2a.由|PF1|-|PF2|=a.
∴丨PF1丨=$\frac{3}{2}$a=3|PF2|,
则$\sqrt{(2+c)^{2}+2}$=3$\sqrt{(2-c)^{2}+2}$,化简得:c2-5c+6=0,
由c<a<3,
∴c=2,
则丨PF1丨=3$\sqrt{2}$=$\frac{3}{2}$a,则a=2$\sqrt{2}$,
b2=a2-c2=4,
∴椭圆的标准方程为:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$;
(2)由题意可知,直线l不过原点,设A(x1,x2),B(x2,y2),
①当直线l⊥x轴,直线l的方程x=m,(m≠0),且-2$\sqrt{2}$<m<2$\sqrt{2}$,
则x1=m,y1=$\sqrt{4-\frac{{m}^{2}}{2}}$,x2=m,y2=-$\sqrt{4-\frac{{m}^{2}}{2}}$,
由$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴x1x2+y1y2=0,即m2-(4-$\frac{{m}^{2}}{2}$)=0,
解得:m=±$\frac{2\sqrt{6}}{3}$,
故直线l的方程为x=±$\frac{2\sqrt{6}}{3}$,
∴原点O到直线l的距离d=$\frac{2\sqrt{6}}{3}$,
②当直线AB的斜率存在时,设直线AB的方程为y=kx+n,
则$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y=kx+n}\end{array}\right.$,消去y整理得:(1+2k2)x2+4knx+2n2-8=0,
x1+x2=-$\frac{4kn}{1+2{k}^{2}}$,x1x2=$\frac{2{n}^{2}-8}{1+2{k}^{2}}$,
则y1y2=(kx1+n)(kx2+n)=k2x1x2+kn(x1+x2)+n2=$\frac{{n}^{2}-8{k}^{2}}{1+2{k}^{2}}$,
由$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴x1x2+y1y2=0,故$\frac{2{n}^{2}-8}{1+2{k}^{2}}$+$\frac{{n}^{2}-8{k}^{2}}{1+2{k}^{2}}$=0,
整理得:3n2-8k2-8=0,即3n2=8k2+8,①
则原点O到直线l的距离d=$\frac{丨n丨}{\sqrt{1+{k}^{2}}}$,
∴d2=($\frac{丨n丨}{\sqrt{1+{k}^{2}}}$)2=$\frac{{n}^{2}}{1+{k}^{2}}$=$\frac{3{n}^{2}}{3(1+{k}^{2})}$,②
将①代入②,则d2=$\frac{8{k}^{2}+8}{3(1+{k}^{2})}$=$\frac{8}{3}$,
∴d=$\frac{2\sqrt{6}}{3}$,
综上可知:点O到直线l的距离为定值$\frac{2\sqrt{6}}{3}$.
点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,点到直线的距离公式,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -2 | C. | ±2 | D. | ±3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{e}^{2}}$ | B. | 2(ln2-1) | C. | $\frac{4}{{e}^{2}}$ | D. | ln2-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 9 | D. | 不确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com