精英家教网 > 高中数学 > 题目详情
4.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若$\frac{|MA|}{|AF|}$=2,则p=2.

分析 设M到准线的距离为|MB|,则|MB|=|MF|,利用$\frac{|MA|}{|AF|}$=2,得x0=p,即可得出结论.

解答 解:设M到准线的距离为|MB|,则|MB|=|MF|,
∵$\frac{|MA|}{|AF|}$=2,∴x0=p,
∴2p2=8,
∵p>0,
∴p=2.
故答案为2.

点评 本题考查抛物线定义的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知直线l:ax+2by+3c=0和两定点A(0,13),B(5,10),若点B在l上的射影为C,且a,2b,3c成等差数列,则|AC|的取值范围为[$\sqrt{10}$,5$\sqrt{10}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为0.5,两次闭合后都出现红灯的概率为0.2,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为(  )
A.0.1B.0.2C.0.4D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=-x2+14x+15,数列{an}满足an=f(n),n∈N+,数列{an}的前n项和Sn最大时,n=(  )
A.14B.15C.14或15D.15或16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|x2+5x>0},B={x|-3<x<4},则A∩B等于(  )
A.(-5,0)B.(-3,0)C.(0,4)D.(-5,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=-x2-6x-3,设max{p,q}表示p,q二者中较大的一个.函数g(x)=max{($\frac{1}{2}$)x-2,log2(x+3)}.若m<-2,且?x1∈[m,-2),?x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为(  )
A.-5B.-4C.-2$\sqrt{5}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1(-c,0)、F2(c、0)分别是椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{b^2}$=1(0<b<a<3)的左、右焦点,点P(2,$\sqrt{2}$)是椭圆G上一点,且|PF1|-|PF2|=a.
(1)求椭圆G的方程;
(2)设直线l与椭圆G相交于A、B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O为坐标原点,判断O到直线l的距离是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥C-PAB中,AB⊥BC,PB⊥BC,PA=PB=5,AB=6,BC=4,点M是PC的中点,点N在线段AB上,且MN⊥AB.
(1)求AN的长;
(2)求锐二面角P-NC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“x>1“是“2x>1”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案