精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=-x2+14x+15,数列{an}满足an=f(n),n∈N+,数列{an}的前n项和Sn最大时,n=(  )
A.14B.15C.14或15D.15或16

分析 由题意,-n2+14n+15≥0,得-1≤n≤15,即可得出结论.

解答 解:由题意,-n2+14n+15≥0,∴-1≤n≤15,
∴数列{an}的前n项和Sn最大时,n=14或15.
故选:C.

点评 本题考查数列的函数性质,考查学生解不等式的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为(  )
A.[-$\frac{1}{12}$,0]B.[-$\frac{1}{12}$,-$\frac{4}{49}$)C.(-$\frac{4}{49}$,0]D.[-$\frac{4}{49}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P1(2,-1),P2(0,5)且点P在P1P2的延长线上,$|{\overrightarrow{{P_1}P}}|=2|{\overrightarrow{P{P_2}}}|$,则点P的坐标为(-2,11).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}是首项为1的单调递增的等比数列,且满足a3,$\frac{5}{3}$a4,a5成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设数列{$\frac{2n-1}{{a}_{n}}$}的前n项和Sn,求证:Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x∈R|x-1>0},B={x∈R|x<0},C={x∈R|x(x-1)>0},则“x∈A∪B“是“x∈C“的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2lnx-ax+a(a∈R).
(1)若曲线y=f(x)在点P(1,f(1))处的切线与直线2x+y-1=0垂直,求a的值;
(2)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2$\sqrt{2}$)是抛物线C上一点,圆M与y轴相切且与线段MF相交于点A,若$\frac{|MA|}{|AF|}$=2,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在等比数列{an}中,首项a1=1,若数列{an}的前n项之积为Tn,且T5=1024,则该数列的公比的值为(  )
A.2B.-2C.±2D.±3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分图象如图所示,将函数y=f(x)的图象向左平移$\frac{4π}{3}$个单位,得到函数y=g(x)的图象,则函数y=g(x)在区间$[{\frac{π}{2},\frac{5π}{2}}]$上的最大值为(  )
A.3B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案