精英家教网 > 高中数学 > 题目详情
20.已知数列{an}是首项为1的单调递增的等比数列,且满足a3,$\frac{5}{3}$a4,a5成等差数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设数列{$\frac{2n-1}{{a}_{n}}$}的前n项和Sn,求证:Sn<3.

分析 (1)由已知列关于公比q的方程组,求解得到q值,则等比数列的通项公式可求;
(2)把{an}的通项公式代入数列{$\frac{2n-1}{{a}_{n}}$},利用错位相减法求其和,可得Sn<3.

解答 (1)解:由${a}_{3}+{a}_{5}=2×\frac{5}{3}{a}_{4}$,得${q}^{2}+{q}^{4}=\frac{10}{3}{q}^{3}$,
而q≠0,得3q2-10q+3=0,解得q=$\frac{1}{3}$或q=3.
∵数列{an}是首项为1的单调递增的等比数列,
∴q=3,则${a_n}={3^{n-1}}$;
(2)证明:由$\frac{2n-1}{{a}_{n}}=\frac{2n-1}{{3}^{n-1}}$,
∴${S_n}=1+\frac{3}{3}+\frac{5}{3^2}+\frac{7}{3^3}+…+\frac{2n-1}{{{3^{n-1}}}}$,①
∴$\frac{1}{3}{S_n}=\frac{1}{3}+\frac{3}{3^2}+\frac{5}{3^3}+\frac{7}{3^4}+…+\frac{2n-1}{3^n}$,②
①-②得:$\frac{2}{3}{S_n}=1+2({\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+…+\frac{1}{{{3^{n-1}}}}})-\frac{2n-1}{3^n}$=$1+2×\frac{\frac{1}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}=\frac{2n-1}{{3}^{n-1}}$,
得${S_n}=3-\frac{n+1}{{{3^{n-1}}}}$<3.
∴Sn<3.

点评 本题考查数列递推式,考查了等比数列通项公式的求法,训练了错位相减法求数列的和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2ax3-(3a+1)x2+2x+5;
(1)a为何值时,函数f(x)没有极值点;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在多项式(3$\sqrt{x}$-$\frac{2}{\root{3}{x}}$)4($\sqrt{x}$+2x)5的展开式中,含x2项的系数为(  )
A.-32B.32C.-96D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.网络用语“车珠子”,通常是指将一块原料木头通过加工打磨,变成球状珠子的过程,某同学有一圆锥状的木块,想把它“车成珠子”,经测量,该圆锥状木块的底面直径为12cm,体积为96πcm3,假设条件理想,他能成功,则该珠子的体积最大值是(  )
A.36πcm3B.12πcm3C.9πcm3D.72πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为0.5,两次闭合后都出现红灯的概率为0.2,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为(  )
A.0.1B.0.2C.0.4D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+2$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为-$\frac{1}{4}$,则$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=-x2+14x+15,数列{an}满足an=f(n),n∈N+,数列{an}的前n项和Sn最大时,n=(  )
A.14B.15C.14或15D.15或16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=-x2-6x-3,设max{p,q}表示p,q二者中较大的一个.函数g(x)=max{($\frac{1}{2}$)x-2,log2(x+3)}.若m<-2,且?x1∈[m,-2),?x2∈(0,+∞),使得f(x1)=g(x2)成立,则m的最小值为(  )
A.-5B.-4C.-2$\sqrt{5}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知正六边形ABCDEF内接于圆O,连接AD,BE,现在往圆O内投掷2000粒小米,则可以估计落在阴影区域内的小米的粒数大致是(  )(参考数据:$\frac{π}{\sqrt{3}}$=1.82,$\frac{\sqrt{3}}{π}$=0.55)
A.550B.600C.650D.700

查看答案和解析>>

同步练习册答案