| A. | 2$\sqrt{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{9}{2}$ | D. | 5 |
分析 由$\frac{1}{4}$≤x≤$\frac{1}{2}$,可得1-x>0,则f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$=[x+(1-x)]($\frac{\frac{1}{2}}{x}$+$\frac{2}{1-x}$),展开后,运用基本不等式,即可得到所求最小值.
解答 解:由$\frac{1}{4}$≤x≤$\frac{1}{2}$,可得1-x>0,
f(x)=$\frac{1}{2x}$+$\frac{2}{1-x}$
=[x+(1-x)]($\frac{\frac{1}{2}}{x}$+$\frac{2}{1-x}$)
=$\frac{1}{2}$+2+$\frac{2x}{1-x}$+$\frac{\frac{1}{2}(1-x)}{x}$
≥$\frac{5}{2}$+2$\sqrt{\frac{2x}{1-x}•\frac{1-x}{2x}}$=$\frac{5}{2}$+2=$\frac{9}{2}$,
当且仅当2x=1-x,即为x=$\frac{1}{3}$,可得最小值为$\frac{9}{2}$.
故选:C.
点评 本题考查函数的最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,考查运算能力,属于中档题和易错题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com