分析 (1)由条件可得$\frac{3}{x}$+$\frac{1}{y}$=5,可得3x+4y=$\frac{1}{5}$($\frac{3}{x}$+$\frac{1}{y}$)(3x+4y),展开后,运用基本不等式,计算即可得到所求最小值;
(2)运用基本不等式的变形,可得x+2y+2xy≤(x+2y)+($\frac{x+2y}{2}$)2,令t=x+2y(t>0),解不等式即可得到所求最小值.
解答 解:(1)正数x,y满足x+3y=5xy,
即为$\frac{3}{x}$+$\frac{1}{y}$=5,
可得3x+4y=$\frac{1}{5}$($\frac{3}{x}$+$\frac{1}{y}$)(3x+4y)
=$\frac{1}{5}$(13+$\frac{3x}{y}$+$\frac{12y}{x}$)≥$\frac{1}{5}$(13+2$\sqrt{\frac{3x}{y}•\frac{12y}{x}}$)=5,
当且仅当x=2y=1,可得最小值为5;
(2)x>0,y>0,x+2y+2xy=8,
可得x+2y+2xy≤(x+2y)+($\frac{x+2y}{2}$)2,
令x+2y=t(t>0),
即有t+$\frac{{t}^{2}}{4}$-8≥0,解得t≥4,
当且仅当x=2y=2,可得x+2y取得最小值4.
点评 本题考查基本不等式的运用:求最值,注意运用乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $12\sqrt{3}$ | B. | $3\sqrt{39}$ | C. | 18 | D. | $\frac{{4\sqrt{3}}}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 虾池产量(kg) | 300 | 500 |
| 概率 | 0.5 | 0.5 |
| 虾的市场价格(元/(kg) | 60 | 100 |
| 概率 | 0.4 | 0.6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com