分析 (1)先求出圆的普通方程,再转化为极坐标方程;
(2)由圆的参数方程可得|OA|=4cosβ,|OB|=4cos($β-\frac{π}{3}$),使用三角恒等变换及β的取值范围得出|OA|+|OB|的最大值.
解答 解:(1)圆的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,
∴圆C的极坐标方程为ρ2-4ρcosθ=0,即ρ=4cosθ.
(2)|OA|=4cosβ,|OB|=4cos($β-\frac{π}{3}$),
∴|OA|+|OB|=4cosβ+4cos(β-$\frac{π}{3}$)=4cosβ+2cosβ+2$\sqrt{3}$sinβ=6cos$β+2\sqrt{3}sinβ$=4$\sqrt{3}$sin($β+\frac{π}{3}$).
∵0$<β<\frac{π}{2}$,
∴当$β+\frac{π}{3}$=$\frac{π}{2}$即$β=\frac{π}{6}$时,|OA|+|OB|取得最大值4$\sqrt{3}$.
点评 本题考查了参数方程,极坐标方程与普通方程的转化,参数的几何意义,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>$\frac{1}{3}}$} | B. | {x|x<$\frac{1}{6}}\right\}$} | C. | {x|$\frac{1}{6}$<x<$\frac{1}{3}}$} | D. | {x|x<$\frac{1}{6}$或x>$\frac{1}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com