分析 根据已知条件得出△ABC的外接圆的半径,利用勾股定理得出外接球的半径,即可求出三棱锥的外接球表面积.
解答
解:∵AB=BC=$\sqrt{15}$,AC=6,
∴cosC=$\frac{3}{\sqrt{15}}$,∴sinC=$\frac{\sqrt{6}}{\sqrt{15}}$,
∴△ABC的外接圆的半径=$\frac{\sqrt{15}}{2•\frac{\sqrt{6}}{\sqrt{15}}}$=$\frac{5\sqrt{6}}{4}$,
设三棱锥的外接球的球心到平面ABC的距离为d,
则R2=d2+($\frac{5\sqrt{6}}{4}$)2=(2-d)2+($\frac{5\sqrt{6}}{4}$)2,
∴该三棱锥的外接球半径为R2=$\frac{83}{8}$,表面积为:4πR2=4π×$\frac{83}{8}$=$\frac{83}{2}$π,
故答案为:$\frac{83}{2}$.
点评 本题综合考查了空间几何体的性质,考查三棱锥的外接球表面积,正确求出三棱锥的外接球半径是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=0为f(x)的极大值点 | B. | x=2为f(x)的极大值点 | ||
| C. | x=1为f(x)的极小值点 | D. | x=1为f(x)的极大值点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6π | B. | 10π | C. | 12π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com