分析 ①利用特殊值法举一个反例即可得到结论.
②根据等差数列的前n项和公式进行转化求解
③根据基本不等式的性质和应用进行判断,
④根据特殊值法举一个反例进行判断.
⑤利用正弦定理以及两角和差的余弦公式进行化简求解即可、
解答 解:①若等比数列{an}的前n项和为Sn,则S100,S200-S100,S300-S200成等比数列不一定正确,比如
an=(-1)2,满足数列是等比数列,但S100=0,S200-S100=0,S300-S200=0,不能构成等比数列,故①错误,
②已知等差数列{an},{bn}的前n项和分别为An,Bn,且满足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,
设等差数列{an},{bn}公差分别为d,b,
则$\frac{{a}_{1}+{a}_{2}+{a}_{12}}{{b}_{2}+{b}_{4}+{b}_{9}}$=$\frac{3{a}_{1}+12d}{3{b}_{1}+12b}$=$\frac{{a}_{1}+4d}{{b}_{1}+4b}$=$\frac{{a}_{5}}{{b}_{5}}$=$\frac{2{a}_{5}}{2{b}_{5}}$=$\frac{{a}_{1}+{a}_{9}}{{b}_{1}+{b}_{9}}$=$\frac{\frac{{a}_{1}+{a}_{9}}{2}×9}{\frac{{b}_{1}+{b}_{9}}{2}×9}$=$\frac{{A}_{9}}{{B}_{9}}$=$\frac{2×9}{9+3}$=$\frac{18}{12}$=$\frac{3}{2}$;故②正确,
③∵P(x,y)到A(0,4)和B(-2,0)的距离相等,
∴$\sqrt{{x}^{2}+(y-4)^{2}}$=$\sqrt{(x+2)^{2}+{y}^{2}}$,整理得x+2y=3,
2x+4y≥2$\sqrt{{2}^{x}•{4}^{y}}$=2$\sqrt{{2}^{x+2y}}$=2$\sqrt{{2}^{3}}$=4$\sqrt{2}$,即2x+4y的最小值为4$\sqrt{2}$正确,故③正确,
④若关于x的不等式(a2-1)x2-(a-1)x-1<0的解集为R,
则当a=1时,不等式等价为-1<0.也成立,故④错误,
⑤b2=ac,则sin2B=sinAsinC.由cos(A-C)=$\frac{3}{2}$-cosB=$\frac{3}{2}$+cos(A+C),化为:sinAsinC=$\frac{3}{4}$.∴sinB=$\frac{\sqrt{3}}{2}$,又B∈(0,π),则B=$\frac{π}{3}$或B=$\frac{2π}{3}$,由b2=ac,可知:B不是最大角,因此是锐角,∴B=$\frac{π}{3}$,故⑤正确,
故答案为:②③⑤
点评 本题主要考查命题的真假判断,涉及的知识点较多,综合性较强,有一定的难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\frac{14}{3}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若向量$\overrightarrow a$,$\overrightarrow b$共线则向量$\overrightarrow a$,$\overrightarrow b$的方向相同 | |
| B. | 若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$则$\overrightarrow a$∥$\overrightarrow c$ | |
| C. | 向量$\overrightarrow{AB}$与向量$\overrightarrow{CD}$是共线向量则A,B,C,D四点在一条直线上 | |
| D. | 若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$则$\overrightarrow a$=$\overrightarrow c$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\sqrt{5}$ | C. | $2\sqrt{5}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com