精英家教网 > 高中数学 > 题目详情
5.锐角α满足cos5α=cos3α,则α=$\frac{π}{4}$.

分析 由条件可得5α=2kπ±3α,由此求得锐角α的值.

解答 解:由于锐角α满足cos5α=cos3α,则5α=2kπ±3α,可得α=kπ (舍去),或α=$\frac{kπ}{4}$,k∈Z,
∴α=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题主要考查诱导共公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.若数列{an}满足a${\;}_{n+1}^{2}$-a${\;}_{n}^{2}$=d,其中d为常数,则称数列{an}为等方差数列.已知等方差数列{an}满足an>0,a1=1,a5=3.
(1)求数列{an}的通项公式;
(2)记bn=na${\;}_{n}^{2}$,若不等式kbn>n(4-k)+4对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.球O与直三棱柱ABC-A1B1C1的各个面都相切,若三棱柱的表面积为27,△ABC的周长为6$\sqrt{3}$,则球的表面积为$\frac{31-12\sqrt{3}}{4}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若复数z=(m-1)+(m+2)i对应的点在直线2x-y-2=0上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2R的无盖立方体容器内装满水,先将半径为R的球放入水中然后再放入一个球,使它完全浸入水中,要使溢出的水量最大,则此球的半径是(  )
A.($\sqrt{3}$-1)RB.$\frac{2-\sqrt{3}}{2}$RC.(2-$\sqrt{3}$)RD.$\frac{\sqrt{3}-1}{2}$R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.己知从点P出发的三条射线PA,PB,PC两两成60°角,且与球O相切于A,B,C点,若球O的体积为36π,则O,P的距离为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.8个相同的小球放入5个不同盒子中,每盒不空的放法共有35种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①若等比数列{an}的前n项和为Sn,则S100,S200-S100,S300-S200成等比数列;
②已知等差数列{an},{bn}的前n项和分别为An,Bn,且满足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,则$\frac{{a}_{1}+{a}_{2}+{a}_{12}}{{b}_{2}+{b}_{4}+{b}_{9}}$=$\frac{3}{2}$;
③已知点P(x,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为4$\sqrt{2}$
④若关于x的不等式(a2-1)x2-(a-1)x-1<0的解集为R,则a的取值范围为(-$\frac{3}{5}$,-1).
⑤若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,则B=$\frac{π}{3}$.
其中正确的是②③⑤你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥3}\\{x-2y≤0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.-4B.5C.4D.无最小值

查看答案和解析>>

同步练习册答案