精英家教网 > 高中数学 > 题目详情
9.下列说法正确的是(  )
A.若向量$\overrightarrow a$,$\overrightarrow b$共线则向量$\overrightarrow a$,$\overrightarrow b$的方向相同
B.若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$则$\overrightarrow a$∥$\overrightarrow c$
C.向量$\overrightarrow{AB}$与向量$\overrightarrow{CD}$是共线向量则A,B,C,D四点在一条直线上
D.若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$则$\overrightarrow a$=$\overrightarrow c$

分析 根据平面向量的有关概念,对选项中的命题进行分析、判断即可.

解答 解:对于A,向量$\overrightarrow a$,$\overrightarrow b$共线时,向量$\overrightarrow a$,$\overrightarrow b$的方向相同或相反,故命题错误;
对于B,$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$时,$\overrightarrow a$∥$\overrightarrow c$在$\overrightarrow b$=$\overrightarrow{0}$时不一定成立,故命题错误;
对于C,向量$\overrightarrow{AB}$与向量$\overrightarrow{CD}$是共线向量,则A,B,C,D四点不一定在一条直线上,
如平行四边形ABDC中,$\overrightarrow{AB}$=$\overrightarrow{CD}$,故命题错误;
对于D,当$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$时,$\overrightarrow a$=$\overrightarrow c$,命题正确.
故选:D.

点评 本题考查了平面向量的有关概念与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.比较下列各组中两个代数式的大小:
(1)x2-x与x-2;
(2)已知a,b为正数,且a≠b比较a3+b3与a2b+ab2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在棱长为2R的无盖立方体容器内装满水,先将半径为R的球放入水中然后再放入一个球,使它完全浸入水中,要使溢出的水量最大,则此球的半径是(  )
A.($\sqrt{3}$-1)RB.$\frac{2-\sqrt{3}}{2}$RC.(2-$\sqrt{3}$)RD.$\frac{\sqrt{3}-1}{2}$R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.8个相同的小球放入5个不同盒子中,每盒不空的放法共有35种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y∈R,且x2+y2=4,那么x2-2$\sqrt{3}$xy-y2的最大值为(  )
A.2B.2$\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①若等比数列{an}的前n项和为Sn,则S100,S200-S100,S300-S200成等比数列;
②已知等差数列{an},{bn}的前n项和分别为An,Bn,且满足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,则$\frac{{a}_{1}+{a}_{2}+{a}_{12}}{{b}_{2}+{b}_{4}+{b}_{9}}$=$\frac{3}{2}$;
③已知点P(x,y)到A(0,4)和B(-2,0)的距离相等,则2x+4y的最小值为4$\sqrt{2}$
④若关于x的不等式(a2-1)x2-(a-1)x-1<0的解集为R,则a的取值范围为(-$\frac{3}{5}$,-1).
⑤若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,则B=$\frac{π}{3}$.
其中正确的是②③⑤你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y满足约束条件$\left\{{\begin{array}{l}{x-2y≥0}\\{2x+2y-3≤0}\\{y≥\frac{1}{4}}\end{array}}\right.$,则z=2x-y的最大值为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.函数f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$),已知y=f(x)的最大值为2,其图象相邻两对称轴的距离为2,并过点(1,2).
(1)求φ;
(2)求f(1)+f(2)+f(3)+…+(2015)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:
分组等待时间(分钟)人数
第一组[0,5)10
第二组[5,10)a
第三组[10,15)30
第四组[15,20)10
(Ⅰ)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(Ⅱ)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案