精英家教网 > 高中数学 > 题目详情
通过随机询问110名性别不同的大学生是否爱好某项运动,其中60名男大学生中有40人爱好此项运动,女大学生中有20人爱好此项运动,其中K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,附表:
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
能不能有99%以上的把握认为“爱好该项运动与性别有关”
考点:独立性检验
专题:计算题,概率与统计
分析:由K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
公式代入数据从而查表得出概率.
解答: 解:假设:爱好该项运动与性别无关,
∵K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

=
110×(20×30-40×20)2
60×50×40×70
≈0.524<6.635.
故没有99%以上的把握认为“爱好该项运动与性别有关”.
点评:本题考查了学生对独立性检验的掌握,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设tanα=3,则
sin(α-π)+cos(π-α)
sin(
π
2
-α)+cos(
π
2
+α)
=(  )
A、3B、2C、1D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象上相邻的最高点与最低点的坐标分别为(
12
,3)和(
11π
12
,-3),
求(1)求该函数的解析式
(2)若关于x的方程f(x)=a在(0,
6
)有两个不同的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是三角形的一个内角,且满足sinα+cosα=
1
5
,求tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=3x,证明函数在x∈R上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z=(1-2i)2+3i+4
(1)求z及|
.
z
+i
|;
(2)若
1+i
z
+az+b=2-i求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,CA=CB,∠BAP=45°,直线CA和平面α所成的角为30°.
(1)求证:BC⊥PQ;    
(2)若AC=2,求二面角B-AC-P的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(-1,1),
b
=(4,3),
c
=(5,-2)
(Ⅰ)若(
a
+t
b
)∥
c
,求实数t的值;
(Ⅱ)求
c
a
方向上的正射影的数量.

查看答案和解析>>

科目:高中数学 来源: 题型:

解方程:x3-13x+12=0.

查看答案和解析>>

同步练习册答案