精英家教网 > 高中数学 > 题目详情
解方程:x3-13x+12=0.
考点:函数的零点
专题:函数的性质及应用
分析:把-13x拆成-x-12x进行因式分解,然后求解x的值.
解答: 解:由x3-13x+12=0,得
x3-x-12x+12=0,
即x(x2-1)-12(x-1)=0,
(x-1)(x2+x-12)=0.
解得:x=-4或x=1或x=3.
点评:本题考查了一元三次方程的解法,关键是正确进行因式分解,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

通过随机询问110名性别不同的大学生是否爱好某项运动,其中60名男大学生中有40人爱好此项运动,女大学生中有20人爱好此项运动,其中K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,附表:
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
能不能有99%以上的把握认为“爱好该项运动与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

在二项式(
3x2
+3x2)n
的展开式中,各项的系数和比各项的二项式系数和大992,试求
(1)n的值.
(2)求该二项式展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+mx2-m2x+1(m为常数,且m>0),当x=-2时有极大值.
(1)求m的值,及其函数的单调区间;
(2)若曲线y=f(x)过点(-1,f(-1))的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线x2=4y上两定点A,B分别在对称轴左、右两侧,F为抛物线的焦点,且|AF|=2,|BF|=5.
(1)求A,B两点的坐标;
(2)在抛物线的AOB一段上求一点P,使△ABP的面积S最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,-1+sinx),
b
=(2cosx,sinx)
(1)试用sinx表示
a
b

(2)求
a
b
的最大值及此时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=Asin(ωx+φ),x∈R(其中A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,求这个函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=log2(x+1)与y=log2(x-1)的图象,并指出这两个函数图象之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

“a<-2”是“函数f(x)=ax+3在区间[-1,2]上存在零点”的
 
条件.

查看答案和解析>>

同步练习册答案