分析 由题意可得$\overrightarrow{AB}•\overrightarrow{BC}$=$\frac{4}{\sqrt{3}}•4•(-\frac{\sqrt{3}}{2})$=-8,$\overrightarrow{BP}$=λ•$\overrightarrow{BC}$,0≤λ≤1,计算 $\overrightarrow{AP}•\overrightarrow{AE}$=($\overrightarrow{AB}+\overrightarrow{BP}$)•($\overrightarrow{AB}$+$\overrightarrow{BC}$)为4λ-$\frac{2}{3}$,0≤λ≤1,从而求得它的最大值和最小值,从而得出结论.
解答
解:∵三角形ABC中,AB=AC,BC=4,∠BAC=120°,
∴AB=$\frac{4}{\sqrt{3}}$,∠ABC=30°,
∴$\overrightarrow{AB}•\overrightarrow{BC}$=$\frac{4}{\sqrt{3}}•4•(-\frac{\sqrt{3}}{2})$=-8.
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴$\overrightarrow{BE}$=$\frac{3}{4}$$\overrightarrow{BC}$,∴$\overrightarrow{BP}$=λ•$\overrightarrow{BC}$,0≤λ≤1,
∵$\overrightarrow{AP}•\overrightarrow{AE}$=($\overrightarrow{AB}+\overrightarrow{BP}$)•($\overrightarrow{AB}$+$\overrightarrow{BC}$)
=${\overrightarrow{AB}}^{2}$+λ•$\overrightarrow{AB}•\overrightarrow{BC}$+$\frac{3}{4}$•${\overrightarrow{BC}}^{2}$+3•$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{4}$
=$\frac{16}{3}$-8λ+12λ+$\frac{3}{4}$•(-8)=4λ-$\frac{2}{3}$,0≤λ≤1,
故当λ=0时,$\overrightarrow{AP}•\overrightarrow{AE}$ 取得最小值为-$\frac{2}{3}$,当λ=1时,$\overrightarrow{AP}•\overrightarrow{AE}$ 取得最大值为$\frac{10}{3}$,
故则$\overrightarrow{AP}$•$\overrightarrow{AE}$的最大值和最小值之差是$\frac{10}{3}$+$\frac{2}{3}$=4,
故答案为:4.
点评 本题考查了平面向量的运用算,向量的分解合成,数量积的运用,属于中档题,关键是转化为统一的向量求解.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<0} | B. | {x|-2<x<0} | C. | {x|x<2} | D. | {x|x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com