精英家教网 > 高中数学 > 题目详情
14.如图,若n=4时,则输出的结果为$\frac{4}{9}$.

分析 模拟程序的运行过程,分析循环中各变量值的变化情况可知:该程序的功能是利用循环结构计算并输出变量S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$的值,用裂项法即可计算得解.

解答 解:模拟执行程序,可得
n=4,k=1,S=0
S=$\frac{1}{1×3}$,满足条件k<4,k=2
S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,满足条件k<4,k=3
S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,满足条件k<4,k=4
S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$,不满足条件k<4,退出循环,输出S的值.
由于S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+($\frac{1}{7}$-$\frac{1}{9}$)]=$\frac{4}{9}$.
故答案为:$\frac{4}{9}$.

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.随机变量a服从正态分布N(1,σ2),且P(0<a<1)=0.3000.已知a>0,a≠1,则函数y=ax+1-a图象不经过第二象限的概率为(  )
A.0.3750B.0.3000C.0.2500D.0.2000

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰△ABC中,已知BC=4,∠BAC=120°,若点P是BC边上的动点,点E满足$\overrightarrow{BE}$=3$\overrightarrow{EC}$,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的最大值和最小值之差是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第五《商功》有一道关于圆柱体的体积试题:今有圆堡,周四丈八尺,高一丈一尺,问积几何?其意思是:含有圆柱形的土筑小城堡,底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π取3,估算小城堡的体积为(  )
A.1998立方尺B.2012立方尺C.2112立方尺D.2324立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若$\overrightarrow b=(sin{75°},cos{105°})$,$|\overrightarrow a|=3|\overrightarrow b|$,且$(\sqrt{3}\overrightarrow a+\overrightarrow b)•\overrightarrow b=-2$,则 $cos<\overrightarrow a,\overrightarrow b>$=(  )
A.$-\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数$f(x)=cos(ln\frac{x-1}{x+1})$的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某同学在电脑上打出如下若干个“★”和“○”:★○★○○★○○○★○○○○★○○○○○★…若以此规律继续打下去,则前2015个图形的“★”的个数是(  )
A.60B.61C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下)

(Ⅰ)体育成绩大于或等于70分的学生常被成为“体育良好”,已知该校高一年级有1000名学生,试估计,高一全年级中“体育良好”的学生人数;
(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在[60,70)和[80,90)的样本学生中随机抽取2人,至少有1人体育成绩在[60,70)的概率;
(Ⅲ)假设甲、乙、丙三人的体育成绩分别为a,b,c,且分别在[70,80),[80,90),[90,100]三组中,其中a,b,c∈N,当数据a,b,c的方差s2最小时,写出a,b,c的值.(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=tan(x-$\frac{π}{4}$)的单调区间为(  )
A.(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)(k∈Z)B.(kπ,(k+1)π)(k∈Z)C.(kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$)(k∈Z)D.(kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$)(k∈Z)

查看答案和解析>>

同步练习册答案