精英家教网 > 高中数学 > 题目详情
15.如图所示,△ABC中,∠C=90°,∠B=60°,AB=2$\sqrt{3}$,在三角形内挖去半圆(圆心O在边AC上,半圆与BC、AB相切于点C、M,与AC交于N),则图中阴影部分绕直线AC旋转一周所得旋转体的内外表面积之比为$\frac{4}{9}$.

分析 旋转体为圆锥内部挖去一个内切球,计算出球的半径和圆锥的底面半径即可代入面积公式计算.

解答 解:在Rt△ABC中,∵C=90°,B=60°,AB=2$\sqrt{3}$,
∴BC=$\sqrt{3}$,AC=3.
∴几何体的外表面为S1=πBC2+π×BC×AB=9π.
设圆O的半径为r,由圆的性质得BM=BC=$\sqrt{3}$,∴AM=$\sqrt{3}$,OM=r,
∵Rt△AOM∽Rt△ABC,
∴$\frac{AM}{AC}=\frac{OM}{BC}$,即$\frac{\sqrt{3}}{3}=\frac{r}{\sqrt{3}}$,解得r=1.
∴几何体的内表面积S2=4πr2=4π.
∴几何体的内外表面积之比为$\frac{{S}_{1}}{{S}_{2}}=\frac{4}{9}$.
故答案为:$\frac{4}{9}$.

点评 本题考查了圆锥与内切球的关系,面积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x,x≤0\\ ln(x+1),x>0\end{array}\right.$,若对x∈R都有|f(x)|≥ax,则实数a的取值范围是(  )
A.(-∞,0]B.[-2,0]C.[-2,1]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,△ABC中,∠C=90°,AC=6,BC=8,点D从点C出发,以每秒1个单位的速度沿着CB向点B运功,△ADE和△ADC关于AD成轴对称,连接BE,设点D运动时间为t秒.
(1)当t为何值时,△BDE是以BE为底的等腰三角形?
(2)当t为何值时,用BD,DE、AD的长度作为线段所围成的三角形是以BD为直角边的直角三角形?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=lnx-x3与g(x)=x3-ax的图象上存在关于x轴的对称点,则a的取值范围为(  )
A.(-∞,e)B.(-∞,e]C.(-∞,$\frac{1}{e}$)D.(-∞,$\frac{1}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知椭圆以原点为中心,焦点在x轴上,若短半轴长为$\sqrt{3}$,椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)设椭圆的左焦点为F,直线x=m与椭圆相交于A、B两点,求当△ABF的周长最大时,△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|3$\overrightarrow{a}$-4$\overrightarrow{b}$|=5,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=(  )
A.3B.$\sqrt{3}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=$\sqrt{2}$c,且A=C+$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.随机变量a服从正态分布N(1,σ2),且P(0<a<1)=0.3000.已知a>0,a≠1,则函数y=ax+1-a图象不经过第二象限的概率为(  )
A.0.3750B.0.3000C.0.2500D.0.2000

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等腰△ABC中,已知BC=4,∠BAC=120°,若点P是BC边上的动点,点E满足$\overrightarrow{BE}$=3$\overrightarrow{EC}$,则$\overrightarrow{AP}$•$\overrightarrow{AE}$的最大值和最小值之差是4.

查看答案和解析>>

同步练习册答案