分析 (I)由A=C+$\frac{π}{2}$,可得sinA=sin$(C+\frac{π}{2})$=cosC,由a=$\sqrt{2}$c,利用正弦定理可得sinA=$\sqrt{2}$sinC,化简即可得出.
(II)由(I)可得:cosC=$\frac{\sqrt{6}}{3}$,sinC=$\frac{\sqrt{3}}{3}$.sinA=$\frac{\sqrt{6}}{3}$,cosA=-$\frac{\sqrt{3}}{3}$.利用sinB=sin(A+C),展开即可得出.
解答 解:(I)在△ABC中,∵A=C+$\frac{π}{2}$,∴sinA=sin$(C+\frac{π}{2})$=cosC,
由a=$\sqrt{2}$c,∴sinA=$\sqrt{2}$sinC,
∴$\sqrt{2}$sinC=cosC,
∴tanC=$\frac{\sqrt{2}}{2}$,∴C为锐角.
∴cosC=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$.
(II)由(I)可得:cosC=$\frac{\sqrt{6}}{3}$,sinC=$\frac{\sqrt{3}}{3}$.
∵A=C+$\frac{π}{2}$.
∴sinA=cosC=$\frac{\sqrt{6}}{3}$,cosA=-$\frac{\sqrt{3}}{3}$.
∴sinB=sin(A+C)=sinAcosC+cosAsinC
=$\frac{\sqrt{6}}{3}×\frac{\sqrt{6}}{3}$-$\frac{\sqrt{3}}{3}×\frac{\sqrt{3}}{3}$=$\frac{1}{3}$.
点评 本题考查了正弦定理余弦定理、诱导公式、同角三角函数基本关系式、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com