精英家教网 > 高中数学 > 题目详情
2.若x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-1≤0}\\{x≥0}\end{array}\right.$,则z=5x-3y的最小值为(  )
A.-3B.-1C.0D.2

分析 作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=5x-3y得y=$\frac{5}{3}$x-$\frac{z}{3}$
平移直线y=$\frac{5}{3}$x-$\frac{z}{3}$,
由图象可知当直线y=$\frac{5}{3}$x-$\frac{z}{3}$经过点A(0,1)时,直线的截距最大,
此时z最小,
此时z=-3,
故选:A.

点评 本题主要考查导数的几何意义,以及利用线性规划的应用,综合性较强,考查学生解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={-2,-1,0,1,2,3},B={x|x2-2x-3<0},则A∩B=(  )
A.{-1,0}B.{0,1,2}C.{-1,0,1}D.{-2,-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-2,3).
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)求当k为何值时,向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$垂直?
(3)求当k为何值时,向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$平行?并确定两向量平行时,它们是同向还是反向?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.己知椭圆以原点为中心,焦点在x轴上,若短半轴长为$\sqrt{3}$,椭圆的离心率为$\frac{1}{2}$.
(1)求椭圆的标准方程;
(2)设椭圆的左焦点为F,直线x=m与椭圆相交于A、B两点,求当△ABF的周长最大时,△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1(-c,0),F2(c,0),双曲线S:$\frac{{y}^{2}}{{m}^{2}}$-$\frac{{x}^{2}}{{n}^{2}}$=1(m>0,n>0)的顶点为G1(0,-m),G2(0,m),椭圆Г和双曲线S都经过P(1,$\frac{2\sqrt{3}}{3}$),若四边形F1G1F2G2为正方形,且这个正方形的面积为2.
(Ⅰ)求椭圆Г和双曲线S的方程;
(Ⅱ)是否存在直线l:y=kx+t,使得此直线l与椭圆Г相切、与双曲线S相交于A,B两点,且满足|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$$+\overrightarrow{OB}$|?若存在,求出k,t的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=$\sqrt{2}$c,且A=C+$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设f(x)=ax2+bx+2是定义在[1+a,1]上的偶函数,则a+2b=(  )
A.0B.2C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.自2014年1月26日悄悄上线后,微信红包迅速流行开来,其火爆程度不亚于此前的“打飞机”小游戏,数据显示,从除夕开始至初一16时,参与抢微信红包的用户超过500万,总计抢红包7500万次以上.小张除夕夜向在线的小王、小李、小明随机发放微信红包,每次发1个.
(Ⅰ)若小张发放10元红包3个,求小王恰得到2个的概率;
(Ⅱ)若小张发放4个红包,其中5元的一个,10元的两个,15元的一个,记小明所得红包的总钱数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=3an-λ(λ为常数).
(1)求λ的值及数列{an}的通项公式;
(2)记bn=$\frac{n+1}{{a}_{n}}$(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案