精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,异面直线SA和BC所成角的大小是60°.
(Ⅰ)求证:直线SA平面BDE;
(Ⅱ)求直线BD与平面SBC所成角的正弦值.
(I)如图,连接EO,
∵四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,
∴O是AC的中点,
∵E是侧棱SC的中点,
∴EO是△ASC的中位线,
∴EOSA,
∵SA?面ASC,EO不包含于面ASC,
∴直线SA平面BDE.
(II)过点O作CB的平行线作x轴,过O作AB的平行线作y轴,以OS为z轴,建立如图所示的空间直角坐标系,
∵四棱锥S-ABCD中,底面ABCD是边长为4的正方形,
O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,
异面直线SA和BC所成角的大小是60°,
∴SA=4,SO=2
2

∴B(2,2,0),C(-2,2,0),S(0,0,2
2
),D(-2,-2,0),
SB
=(2,2,-2
2
)
SC
=(-2,2,-2
2
)
BD
=(-4,-4,0)

设面SBC的法向量为
n
=(x,y,z)

SB
n
=0
SC
n
=0

2x+2y-2
2
z=0
-2x+2y-2
2
z=0

n
=(0,
2
,1)

设直线BD与平面SBC所成角为θ,
则sinθ=|cos<
BD
n
>|=|
-4
2
4
2
3
|=
3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,异面直线AD与BD1所成角的余弦值为(  )
A.
3
3
B.
6
3
C.
2
2
D.
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱B1C1,AD的中点,则直线MN与底面ABCD所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,BC1与平面BB1D1D所成角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β等于90°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,已知AB=5,AC=3,BD=4,则CD与平面α所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,长方体ABCD-A1B1C1D1中,AB=
2
,BC=AA1=1,则BD1与平面A1B1C1D1所成的角的大小为______°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G为线段PC的中点.
(1)证明:PA平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知锐二面角α-l-β,A为α面内一点,A到β的距离为2
3
,到l的距离为4,则二面角α-l-β的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知PO⊥平面ABCD,点O在AB上,EAPO,四边形ABCD是直角梯形,ABDC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
1
2
CD

(Ⅰ)求证:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大小;
(Ⅲ)在线段PE上是否存在一点M,使DM平面PBC,若存在求出点M;若不存在,说明理由.

查看答案和解析>>

同步练习册答案