| A. | f(sinα)>f(cosβ) | B. | f(sinα)>f(sinβ) | C. | f(sinα)<f(cosβ) | D. | f(cosα)>f(cosβ) |
分析 由题意可得可得α+β>$\frac{π}{2}$,故α>$\frac{π}{2}$-β,可得 sinα>cosβ,再由函数f(x)为(0,1)上的增函数,可得结论.
解答 解:由于α,β为锐角三角形的两内角,可得α+β>$\frac{π}{2}$,
∴α>$\frac{π}{2}$-β,∴sinα>sin($\frac{π}{2}$-β),
故有 sinα>cosβ,
再由函数f(x)=$\frac{lnx}{x}$,f′(x)=$\frac{1-lnx}{x}$,
由f′(x)>0,解得:0<x<e,
故f(x)为(0,1)上的增函数,可得f(sinα)>f(cosβ),
故选:A.
点评 本题主要考查函数的单调性的定义和性质,得到sinα>cosβ,是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {m|m≥4} | B. | {m|m≥2$\sqrt{3}$} | C. | {m|m≤2$\sqrt{3}$或m≥4} | D. | {m|4≤m≤2$\sqrt{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | $\frac{3\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x1f(x2)>x2f(x1) | B. | x1f(x2)<x2f(x1) | C. | x1f(x2)=x2f(x1) | D. | x1f(x1)=x2f(x2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com