精英家教网 > 高中数学 > 题目详情
11.如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若$\overrightarrow{D{B}_{1}}$的坐标为(4,3,2),则$\overrightarrow{A{C}_{1}}$的坐标是(-4,3,2).

分析 由$\overrightarrow{D{B}_{1}}$的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.

解答 解:如图,以长方体ABCD-A1B1C1D1的顶点D为坐标原点,
过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,
∵$\overrightarrow{D{B}_{1}}$的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),
∴$\overrightarrow{A{C_1}}=(-4,3,2)$.
故答案为:(-4,3,2).

点评 本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某程序框图所示,执行该程序,若输入的p的值为64,则该算法的功能是(  )
A.求3+4+5+…+63的值B.求3+4+5+…+64的值
C.求数列{3n}的前6项和D.求数列{3n}的前7项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn满足Sn=$\frac{3}{2}$n2+$\frac{7}{2}$n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2,b3-3,b2+2成等差数列.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=an•bn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某海滨浴场的海浪高度y(米)是时间t(0≤t≤24),单位:小时)的函数,记为y=f(x),下表是某日各时的浪高数据:
t时03691215182124
y米1.51.00.50.981.51.010.50.991.5
经长期观察,y=f(t)的曲线可以近似地看出是函数y=Acos(ωt)+k(A>0)的曲线.浴场规定:当海浪高度高于1米时才对冲浪爱好者开放,根据以上数据,当天上午8:00时至晚上20:00时之间可供冲浪爱好者冲浪的时间约为多少时?(  )
A.10小时B.8小时C.6小时D.4小时

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在5次试验中成功次数X的方差为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:x2=2py(p>0)的焦点F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线的切线交x轴于点D,交y轴于点Q,交直线l:y=$\frac{p}{2}$于点M,|FD|=2,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)求△DFM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则圆的直角坐标方程为(x-1)2+(y-1)2=2,直线l和圆C的位置关系为相交(填相交、相切、相离).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线${C_1}:y=\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程和C2的普通方程;
(2)把C1绕坐标原点沿逆时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=x2的图象在点(x0,x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(  )
A.x0∈($\sqrt{2}$,$\sqrt{3}$)B.x0∈(1,$\sqrt{2}$)C.x0∈(0,$\frac{1}{2}$)D.x0∈($\frac{1}{2}$,1)

查看答案和解析>>

同步练习册答案