7£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±Ïß${C_1}£ºy=\sqrt{3}x$£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\sqrt{3}+cos¦È\\ y=-2+sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóC1µÄ¼«×ø±ê·½³ÌºÍC2µÄÆÕͨ·½³Ì£»
£¨2£©°ÑC1ÈÆ×ø±êÔ­µãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3£¬C3ÓëC2½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

·ÖÎö £¨1£©ÓÉÖ±ÏßC1µÄÖ±½Ç×ø±ê·½³ÌÄÜÇó³öÖ±ÏßC1µÄ¼«×ø±ê·½³Ì£¬ÇúÏßC2µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦È£¬ÄÜÇó³öÇúÏßC2µÄÆÕͨ·½³Ì£®
£¨2£©°ÑC1ÈÆ×ø±êÔ­µãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3µÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{2¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ$y=-\sqrt{3}x$£®Çó³öÔ²C2µÄÔ²ÐÄ£¨$\sqrt{3}$£¬2£©µ½Ö±ÏßC3£º$\sqrt{3}x+y=0$µÄ¾àÀ룬ÓÉ´ËÀûÓù´¹É¶¨ÀíÄÜÇó³ö|AB|£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïß${C_1}£ºy=\sqrt{3}x$£¬
¡àÖ±ÏßC1µÄ¼«×ø±ê·½³ÌΪ$¦Ñsin¦È=\sqrt{3}¦Ñcos¦È£¬¼´¦È=\frac{¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬
¡ßÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=\sqrt{3}+cos¦È\\ y=-2+sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý¦È£¬µÃÇúÏßC2µÄÆÕͨ·½³ÌΪ${£¨x-\sqrt{3}£©^2}+{£¨y+2£©^2}=1$£®
£¨2£©¡ß°ÑC1ÈÆ×ø±êÔ­µãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$µÃµ½Ö±ÏßC3£¬
¡àC3µÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{2¦Ð}{3}£¨¦Ñ¡ÊR£©$£¬»¯ÎªÖ±½Ç×ø±ê·½³ÌΪ$y=-\sqrt{3}x$£®
Ô²C2µÄÔ²ÐÄ£¨$\sqrt{3}$£¬2£©µ½Ö±ÏßC3£º$\sqrt{3}x+y=0$µÄ¾àÀ룺
$d=\frac{{|{-3+2}|}}{2}=\frac{1}{2}$£®
¡à$|{AB}|=2\sqrt{{1^2}-\frac{1}{4}}=\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÇúÏߵįÕͨ·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Ä³°àÖÜËÄÉÏÎçÓÐ4½Ú¿Î£¬ÏÂÎçÓÐ2½Ú¿Î£¬°²ÅÅÓïÎÄ¡¢Êýѧ¡¢Ó¢Óï¡¢ÎïÀí¡¢ÌåÓý¡¢ÒôÀÖ6ÃſΣ¬ÈôÒªÇóÌåÓý²»ÅÅÔÚÉÏÎçµÚÒ»¡¢¶þ½Ú£¬²¢ÇÒÌåÓý¿ÎÓëÒôÀֿβ»ÏàÁÚ£¬£¨ÉÏÎçµÚËĽÚÓëÏÂÎçµÚÒ»½ÚÀí½âΪÏàÁÚ£©£¬Ôò²»Í¬µÄÅÅ·¨×ÜÊýΪ£¨¡¡¡¡£©
A£®312B£®288C£®480D£®456

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬ÒÔ³¤·½ÌåABCD-A1B1C1D1µÄ¶¥µãDÎª×ø±êÔ­µã£¬¹ýDµÄÈýÌõÀâËùÔÚµÄÖ±ÏßÎª×ø±êÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Èô$\overrightarrow{D{B}_{1}}$µÄ×ø±êΪ£¨4£¬3£¬2£©£¬Ôò$\overrightarrow{A{C}_{1}}$µÄ×ø±êÊÇ£¨-4£¬3£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ${¦Ñ^2}=\frac{a}{{a{{sin}^2}¦È+{{cos}^2}¦È}}£¨{¦È¡ÊR}£©$£¬ÇÒÇúÏßCÔÚ¼«×ø±êϵÖйýµã£¨2£¬¦Ð£©£®
£¨1£©ÇóÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÖ±Ïß$l£º\left\{\begin{array}{l}x=-2+2\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Ö±Ïßm¹ýÏß¶ÎABµÄÖе㣬ÇÒÇãб½ÇÊÇÖ±ÏßlµÄÇãб½ÇµÄ2±¶£¬ÇómµÄ¼«×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨1+3sin2¦È£©=4£®
£¨¢ñ£©ÇóÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôÇúÏßÓëxÖáµÄÕý°ëÖá¼°yÖáµÄÕý°ëÖá·Ö±ð½»ÓÚµãA£¬B£¬ÔÚÇúÏßCÉÏÈÎȡһµãP£¬ÇÒµãPÔÚµÚÒ»ÏóÏÞ£¬ÇóËıßÐÎOAPBÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪa1£¬¹«²îΪdµÄµÈ²îÊýÁУ®
£¨1£©Èôa1=-11£¬d=2£¬bn=3an£¬ÊýÁÐ{bn}µÄǰnÏî»ý¼ÇΪBn£¬ÇÒBn0=1£¬Çón0µÄÖµ£»
£¨2£©Èôa1d¡Ù0£¬ÇÒa13+a23+¡­+an3=£¨a1+a2+¡­+an£©2ºã³ÉÁ¢£¬Çó{an}µÄͨÏʽ£»
£¨3£©Éèn¡¢k¡ÊN*£¬n¡Ý2£¬ÊÔÖ¤×éºÏÊýÂú×ãkCnk=nCn-1k-1£»¹Û²ìC20a1-C21a2+C22a3=0£¬C30a1-C31a2+C32a3-C33a4=0£¬C40a1-C41a2+C42a3-C43a4+C44a5=0£¬¡­£¬Çëд³ö¹ØÓڵȲîÊýÁÐ{an}µÄÒ»°ã½áÂÛ£¬²¢ÀûÓÃkCnk=nCn-1k-1Ö¤Ã÷Ö®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôx£¬yÂú×ã$\left\{\begin{array}{l}{x-y¡Ý1}\\{x+y¡Ü4}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£¬Ôòz=x-2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®1C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬Æäµ¼º¯ÊýΪf'£¨x£©£¬Èôf'£¨x£©-f£¨x£©£¼-2£¬f£¨0£©=3£¬Ôò²»µÈʽf£¨x£©£¾ex+2µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨1£¬+¡Þ£©C£®£¨0£¬+¡Þ£©D£®£¨-¡Þ£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÒ»´ÎÊýѧ¾ºÈüÑ¡°Î²âÊÔÖУ¬Ã¿È˽â3µÀÌ⣬ÖÁÉÙ½â¶Ô2µÀÌâ²ÅÄÜͨ¹ý²âÊÔ±»Ñ¡ÉÏ£¬Éèijͬѧ½â¶ÔÿµÀÌâµÄ¸ÅÂʾùΪp£¨0£¼p£¼1£©£¬ÇÒ¸ÃͬѧÊÇ·ñ½â¶ÔÿµÀÌ⻥Ïà¶ÀÁ¢£¬Èô¸Ãͬѧͨ¹ý²âÊÔ±»Ñ¡ÉϵĸÅÂÊÇ¡ºÃÊÇp£¬ÔòpµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{2}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸