精英家教网 > 高中数学 > 题目详情
10.某班周四上午有4节课,下午有2节课,安排语文、数学、英语、物理、体育、音乐6门课,若要求体育不排在上午第一、二节,并且体育课与音乐课不相邻,(上午第四节与下午第一节理解为相邻),则不同的排法总数为(  )
A.312B.288C.480D.456

分析 根据题意,对体育课的排法分2种情况讨论:①、若体育课排在上午第三、四节和下午第一节,②、若体育课排在下午第二节,每种情况下分析音乐和其他4门课程的排法数目,计算可得每种情况的排法数目,由加法原理计算可得答案.

解答 解:根据题意,体育不排在上午第一、二节,
则体育课只能排在上午第三、四节和下午第一、二节,
分2种情况讨论:
①、若体育课排在上午第三、四节和下午第一节,
体育课有3种排法,
音乐与体育课不相邻,体育课前后2节课不能安排音乐,有3种排法,
将剩下的4门课全排列,安排其余的4节课,有A44=24种排法;
此时有3×3×24=216种排法;
②、若体育课排在下午第二节,
音乐与体育课不相邻,音乐课不能排在下午第一节,有4种排法,
将剩下的4门课全排列,安排其余的4节课,有A44=24种排法;
则此时有4×24=96种排法;
故不同的排法总数为216+96=312种;
故选:A.

点评 本题考查考查排列组合的实际应用,注意依据体育课的位置不同,导致相邻位置的排法不同,要进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图1所示的平面图形中,ABCD是边长为2的正方形,△HDA和△GDC都是以D为直角顶点的等腰直角三角形,点E是线段GC的中点.现将△HDA和△GDC分别沿着DA,DC翻折,直到点H和G重合为点P.连接PB,得如图2的四棱锥.

(Ⅰ)求证:PA∥平面EBD;
(Ⅱ)求二面角C-PB-D大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某程序框图所示,执行该程序,若输入的p的值为64,则该算法的功能是(  )
A.求3+4+5+…+63的值B.求3+4+5+…+64的值
C.求数列{3n}的前6项和D.求数列{3n}的前7项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ex-x.
(1)若函数F(x)=f(x)-ax2-1的导函数F′(x)在[0,+∞)上单调递增,求实数a的取值范围;
(2)求证:f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{n+1}$)>n+$\frac{n}{4(n+2)}$,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,侧面PAB与底面ABCD垂直,△PAB为正三角形,AB⊥AD,CD⊥AD,点E、M分别为线段BC、AD的中点,F、G分别为线段PA、AE上一点,且AB=AD=2,PF=2FA.
(1)当AG=2GE时,求证:FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,a,b,c分别是三个内角A,B,C的对边,b=1,c=$\sqrt{3}$,∠B=30°,则a的值为(  )
A.1或2B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn满足Sn=$\frac{3}{2}$n2+$\frac{7}{2}$n(n∈N*),数列{bn}是首项为4的正项等比数列,且2b2,b3-3,b2+2成等差数列.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)令cn=an•bn(n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某海滨浴场的海浪高度y(米)是时间t(0≤t≤24),单位:小时)的函数,记为y=f(x),下表是某日各时的浪高数据:
t时03691215182124
y米1.51.00.50.981.51.010.50.991.5
经长期观察,y=f(t)的曲线可以近似地看出是函数y=Acos(ωt)+k(A>0)的曲线.浴场规定:当海浪高度高于1米时才对冲浪爱好者开放,根据以上数据,当天上午8:00时至晚上20:00时之间可供冲浪爱好者冲浪的时间约为多少时?(  )
A.10小时B.8小时C.6小时D.4小时

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线${C_1}:y=\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程和C2的普通方程;
(2)把C1绕坐标原点沿逆时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案