精英家教网 > 高中数学 > 题目详情
15.在△ABC中,a,b,c分别是三个内角A,B,C的对边,b=1,c=$\sqrt{3}$,∠B=30°,则a的值为(  )
A.1或2B.1C.2D.$\sqrt{3}$

分析 利用余弦定理建立方程即可求出a的值.

解答 解:由余弦定理可得b2=a2+c2-2accos30?
∵b=1,c=$\sqrt{3}$,B=30°,
∴1=a2+3-2a×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=a2+3-3a,
∴a2-3a+2=0,
解得a=1或a=2,
故选:A.

点评 本题主要考查余弦定理的应用,要求熟练掌握余弦公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数$f(x)=\frac{1}{3}{x^3}+{x^2}+ax,a∈R$,若f(x)在区间$(-∞,-\frac{3}{2})$上存在单调递减区间,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.公比不为1的等比数列{an}满足a5a6+a4a7=8,若a2•am=4,则m的值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一个袋中装有大小相同的黑球和白球共8个,从中任取2个球,记随机变量X为取出2个球中白球的个数,已知P(X=2)=$\frac{3}{28}$.
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量X的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某班周四上午有4节课,下午有2节课,安排语文、数学、英语、物理、体育、音乐6门课,若要求体育不排在上午第一、二节,并且体育课与音乐课不相邻,(上午第四节与下午第一节理解为相邻),则不同的排法总数为(  )
A.312B.288C.480D.456

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,a,b,c分别是三个内角A,B,C的对边,若2asinB=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=$\sqrt{lnx-1}$+$\sqrt{x(3-x)}$定义域为[e,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)的定义域为R,且对于?x∈R,都有f(-x)=f(x)成立.
(1)若x≥0时,f(x)=${({\frac{1}{2}})^x}$,求不等式f(x)>$\frac{1}{4}$的解集;
(2)若f(x+1)是偶函数,且当x∈[0,1]时,f(x)=2x,求f(x)在区间[2016,2017]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}是首项为a1,公差为d的等差数列.
(1)若a1=-11,d=2,bn=3an,数列{bn}的前n项积记为Bn,且Bn0=1,求n0的值;
(2)若a1d≠0,且a13+a23+…+an3=(a1+a2+…+an2恒成立,求{an}的通项公式;
(3)设n、k∈N*,n≥2,试证组合数满足kCnk=nCn-1k-1;观察C20a1-C21a2+C22a3=0,C30a1-C31a2+C32a3-C33a4=0,C40a1-C41a2+C42a3-C43a4+C44a5=0,…,请写出关于等差数列{an}的一般结论,并利用kCnk=nCn-1k-1证明之.

查看答案和解析>>

同步练习册答案