精英家教网 > 高中数学 > 题目详情
2.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2(1+3sin2θ)=4.
(Ⅰ)求曲线C的参数方程;
(Ⅱ)若曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,在曲线C上任取一点P,且点P在第一象限,求四边形OAPB面积的最大值.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,求了曲线C的直角坐标方程为$\frac{x^2}{4}+{y^2}=1$.由此能求出曲线C的参数方程.
(Ⅱ)求出A(2,0),B(0,1),设$P(2cosφ\;,\;\;sinφ)\;,\;\;0<φ<\frac{π}{2}$.则${S_{△POB}}=\frac{1}{2}×1×2cosφ=cosφ\;,\;\;{S_{△POA}}=\frac{1}{2}×2×sinφ=sinφ$,从而四边形OAPB面积${S_{OAPB}}=cosφ+sinφ=\sqrt{2}sin(φ+\frac{π}{4})∈(1\;,\sqrt{2}]$,由此能求出四边形OAPB的面积取最大值.

解答 (本小题满分10分)选修4-4:坐标系与参数方程
解:(Ⅰ)∵曲线C的极坐标方程为ρ2(1+3sin2θ)=4,
即ρ2(sin2θ+cos2θ+3sin2θ)=4,
由x=ρcosθ,y=ρsinθ,
得到曲线C的直角坐标方程为x2+4y2=4,即$\frac{x^2}{4}+{y^2}=1$.
∴曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数).…(5分)
(Ⅱ)∵曲线与x轴的正半轴及y轴的正半轴分别交于点A,B,
∴由已知可得A(2,0),B(0,1),
设$P(2cosφ\;,\;\;sinφ)\;,\;\;0<φ<\frac{π}{2}$.
则${S_{△POB}}=\frac{1}{2}×1×2cosφ=cosφ\;,\;\;{S_{△POA}}=\frac{1}{2}×2×sinφ=sinφ$,
所以四边形OAPB面积${S_{OAPB}}=cosφ+sinφ=\sqrt{2}sin(φ+\frac{π}{4})∈(1\;,\sqrt{2}]$.
当$φ=\frac{π}{4}$时,四边形OAPB的面积取最大值$\sqrt{2}$. …(10分)

点评 本题考查曲线的参数方程的求法,考查四这形面积的最大值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,侧面PAB与底面ABCD垂直,△PAB为正三角形,AB⊥AD,CD⊥AD,点E、M分别为线段BC、AD的中点,F、G分别为线段PA、AE上一点,且AB=AD=2,PF=2FA.
(1)当AG=2GE时,求证:FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在5次试验中成功次数X的方差为$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知直线l的参数方程$\left\{\begin{array}{l}{x=t}\\{y=1+2t}\end{array}\right.$(t为参数),若以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C的极坐标方程为ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$).则圆的直角坐标方程为(x-1)2+(y-1)2=2,直线l和圆C的位置关系为相交(填相交、相切、相离).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{\sqrt{3}+i}{2i}$,$\overline{z}$是z的共轭复数,则z•$\overline{z}$=(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,直线${C_1}:y=\sqrt{3}x$,曲线C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3}+cosθ\\ y=-2+sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程和C2的普通方程;
(2)把C1绕坐标原点沿逆时针方向旋转$\frac{π}{3}$得到直线C3,C3与C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列四个结论:
(1)如果${(3x-\frac{1}{{\root{3}{x^2}}})^n}$的展开式中各项系数之和为128,则展开式中$\frac{1}{x^3}$的系数是-21;
(2)用相关指数r来刻画回归效果,r的值越大,说明模型的拟合效果越差;
(3)若f(x)是R上的奇函数,且满足f(x+2)=-f(x),则f(x)的图象关于x=1对称;
(4)一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c,且a,b,c∈(0,1),已知他投篮一次得分的数学期望为2,则$\frac{2}{a}+\frac{1}{3b}$的最小值为$\frac{16}{3}$;
其中正确结论的序号为(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A-BC-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项等差数列{an}的前n项和为Sn,且满足${a_1}+{a_5}=\frac{1}{3}a_3^2,{S_7}=56$.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{{3^{a_n}}}\right\}$的前n项和.

查看答案和解析>>

同步练习册答案