14£®¸ø³öÏÂÁÐËĸö½áÂÛ£º
£¨1£©Èç¹û${£¨3x-\frac{1}{{\root{3}{x^2}}}£©^n}$µÄÕ¹¿ªÊ½Öи÷ÏîϵÊýÖ®ºÍΪ128£¬ÔòÕ¹¿ªÊ½ÖÐ$\frac{1}{x^3}$µÄϵÊýÊÇ-21£»
£¨2£©ÓÃÏà¹ØÖ¸ÊýrÀ´¿Ì»­»Ø¹éЧ¹û£¬rµÄÖµÔ½´ó£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½²î£»
£¨3£©Èôf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒÂú×ãf£¨x+2£©=-f£¨x£©£¬Ôòf£¨x£©µÄͼÏó¹ØÓÚx=1¶Ô³Æ£»
£¨4£©Ò»¸öÀºÇòÔ˶¯Ô±Í¶ÀºÒ»´ÎµÃ3·ÖµÄ¸ÅÂÊΪa£¬µÃ2·ÖµÄ¸ÅÂÊΪb£¬²»µÃ·ÖµÄ¸ÅÂÊΪc£¬ÇÒa£¬b£¬c¡Ê£¨0£¬1£©£¬ÒÑÖªËûͶÀºÒ»´ÎµÃ·ÖµÄÊýѧÆÚÍûΪ2£¬Ôò$\frac{2}{a}+\frac{1}{3b}$µÄ×îСֵΪ$\frac{16}{3}$£»
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ£¨3£©£¨4£©£®

·ÖÎö £¨1£©ÓÉ${£¨3x-\frac{1}{{\root{3}{x^2}}}£©^n}$µÄÕ¹¿ªÊ½Öи÷ÏîϵÊýÖ®ºÍΪ128¿ÉµÃ£¨3-1£©n=128⇒n=7£¬ÔÙÀûÓÃTr+1=${C}_{7}^{r}$•37-r•£¨-1£©r${x}^{7-\frac{5}{3}r}$£¬Áî7-$\frac{5}{3}r$=-3µÃ£ºr=6£¬´Ó¶øµÃÕ¹¿ªÊ½ÖÐ$\frac{1}{x^3}$µÄϵÊý£»¿ÉÅжϣ¨1£©´íÎó£»
£¨2£©ÓÉÏà¹ØÖ¸ÊýrµÄº¬ÓÐÖª£¬|r|µÄÖµÔ½´ó£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£¬¿ÉÅжϣ¨2£©´íÎó£»
£¨3£©f£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒÂú×ãf£¨x+2£©=-f£¨x£©£¬ÀûÓÃ-xÌæ»»x£¬¿ÉµÃf£¨2-x£©=f£¨x£©£¬¼´f£¨x£©µÄͼÏó¹ØÓÚx=1¶Ô³Æ£¬¿ÉÅжϣ¨3£©ÕýÈ·£»
£¨4£©ÓÉ3a+2b+0•c=2£¬a£¬b£¬c¡Ê£¨0£¬1£©£¬¿ÉµÃ$\frac{2}{a}+\frac{1}{3b}$=£¨$\frac{2}{a}+\frac{1}{3b}$£©•$\frac{1}{2}$£¨3a+2b£©£¬ÀûÓûù±¾²»µÈʽ¿ÉÇóµÃ$\frac{2}{a}+\frac{1}{3b}$=$\frac{1}{2}$£¨6+$\frac{4b}{a}$+$\frac{a}{b}$+$\frac{2}{3}$£©¡Ý$\frac{1}{2}$£¨$\frac{20}{3}$+2$\sqrt{\frac{4b}{a}•\frac{a}{b}}$£©=$\frac{1}{2}$£¨$\frac{20}{3}$+4£©=$\frac{16}{3}$£¨µ±ÇÒ½öµ±a=2b£¬¼´a=$\frac{1}{2}$£¬b=$\frac{1}{4}$ʱȡ¡°=¡±£©£¬¿ÉÅжϣ¨4£©ÕýÈ·£®

½â´ð ½â£º£¨1£©¡ß${£¨3x-\frac{1}{{\root{3}{x^2}}}£©^n}$µÄÕ¹¿ªÊ½Öи÷ÏîϵÊýÖ®ºÍΪ128£¬¡à£¨3-1£©n=128=27£¬¡àn=7£¬
¡àTr+1=${C}_{7}^{r}$•37-r•£¨-1£©r${x}^{7-\frac{5}{3}r}$£¬Áî7-$\frac{5}{3}r$=-3µÃ£ºr=6£¬
¡àÕ¹¿ªÊ½ÖÐ$\frac{1}{x^3}$µÄϵÊýÊÇ${C}_{7}^{6}$•37-6•£¨-1£©6=21¡Ù-21£¬¹Ê£¨1£©´íÎó£»
£¨2£©ÓÃÏà¹ØÖ¸ÊýrÀ´¿Ì»­»Ø¹éЧ¹û£¬|r|µÄÖµÔ½´ó£¬ËµÃ÷Ä£Ð͵ÄÄâºÏЧ¹ûÔ½ºÃ£¬¹Ê£¨2£©´íÎó£»
£¨3£©¡ßf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒÂú×ãf£¨x+2£©=-f£¨x£©£¬
¡àf£¨-x+2£©=-f£¨-x£©=f£¨x£©£¬
¡àf£¨x£©µÄͼÏó¹ØÓÚx=1¶Ô³Æ£¬¹Ê£¨3£©ÕýÈ·£»
£¨4£©¡ß3a+2b+0•c=2£¬a£¬b£¬c¡Ê£¨0£¬1£©£¬
¡à$\frac{2}{a}+\frac{1}{3b}$=£¨$\frac{2}{a}+\frac{1}{3b}$£©•$\frac{1}{2}$£¨3a+2b£©=$\frac{1}{2}$£¨6+$\frac{4b}{a}$+$\frac{a}{b}$+$\frac{2}{3}$£©¡Ý$\frac{1}{2}$£¨$\frac{20}{3}$+2$\sqrt{\frac{4b}{a}•\frac{a}{b}}$£©
=$\frac{1}{2}$£¨$\frac{20}{3}$+4£©=$\frac{16}{3}$£¨µ±ÇÒ½öµ±a=2b£¬¼´a=$\frac{1}{2}$£¬b=$\frac{1}{4}$ʱȡ¡°=¡±£©£¬¹Ê£¨4£©ÕýÈ·£®
ÆäÖÐÕýÈ·½áÂÛµÄÐòºÅΪ£º£¨3£©£¨4£©£®
¹Ê´ð°¸Îª£º£¨3£©£¨4£©£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²é¶þÏîʽ¶¨Àí¡¢Ïà¹ØÖ¸Êý¡¢º¯ÊýµÄÆæÅ¼ÐÔ¡¢¶Ô³ÆÐÔ¼°¸ÅÂÊͳ¼ÆÓë»ù±¾²»µÈʽµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa1+a2=5£¬an+1=3Sn+1£¨n¡ÊN*£©£¬ÔòS5µÈÓÚ£¨¡¡¡¡£©
A£®85B£®255C£®341D£®1023

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=mln£¨x+1£©£¬g£¨x£©=$\frac{x}{x+1}£¨{x£¾-1}£©$£®
£¨1£©µ±m=2ʱ£¬Çóº¯Êýy=f£¨x£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³Ì£®
£¨2£©ÌÖÂÛº¯ÊýF£¨x£©=f£¨x£©-g£¨x£©ÔÚ£¨-1£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨3£©Èôy=f£¨x£©Óëy=g£¨x£©µÄͼÏóÓÐÇÒ½öÓÐÒ»Ìõ¹«ÇÐÏߣ¬ÊÔÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2£¨1+3sin2¦È£©=4£®
£¨¢ñ£©ÇóÇúÏßCµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôÇúÏßÓëxÖáµÄÕý°ëÖá¼°yÖáµÄÕý°ëÖá·Ö±ð½»ÓÚµãA£¬B£¬ÔÚÇúÏßCÉÏÈÎȡһµãP£¬ÇÒµãPÔÚµÚÒ»ÏóÏÞ£¬ÇóËıßÐÎOAPBÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®½«ÓÉÖ±Ïßy=x2ÓëÖ±Ïßx=1ÒÔ¼°xÖáΧ³ÉµÄ·â±ÕͼÐÎÈÆxÖáÐýתһÖÜÐγɵļ¸ºÎÌåµÄÌå»ýΪ$\frac{¦Ð}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Èôx£¬yÂú×ã$\left\{\begin{array}{l}{x-y¡Ý1}\\{x+y¡Ü4}\\{x¡Ý0}\\{y¡Ý0}\end{array}\right.$£¬Ôòz=x-2yµÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®1C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÕýʵÊýx£¬yÂú×ã2x+y=1£¬ÔòxyµÄ×î´óֵΪ$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª´ÓAµØµ½BµØ¹²ÓÐÁ½Ìõ·¾¶L1ºÍL2£¬¾Ýͳ¼Æ£¬¾­¹ýÁ½Ìõ·¾¶ËùÓõÄʱ¼ä»¥²»Ó°Ï죬ÇÒ¾­¹ýL1ÓëL2ËùÓÃʱ¼äÂäÔÚ¸÷ʱ¼ä¶ÎÄ򵀮µÂÊ·Ö²¼Ö±·½Í¼·Ö±ðÈçͼ£¨1£©ºÍͼ£¨2£©£®

Ïּס¢ÒÒÁ½ÈË·Ö±ðÓÐ40·ÖÖÓºÍ50·ÖÖÓʱ¼äÓÃÓÚ´ÓAµØµ½BµØ£®
£¨1£©ÎªÁ˾¡×î´ó¿ÉÄÜÔÚ¸÷×ÔÔÊÐíµÄʱ¼äÄڸϵ½BµØ£¬¼×ºÍÒÒÓ¦ÈçºÎÑ¡Ôñ¸÷×Եķ¾¶£¿
£¨2£©ÓÃX±íʾ¼×¡¢ÒÒÁ½ÈËÖÐÔÚÔÊÐíµÄʱ¼äÄÚÄܸϵ½BµØµÄÈËÊý£¬Õë¶Ô£¨1£©µÄÑ¡Ôñ·½°¸£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÓÃ×ܳ¤Îª24mµÄ¸ÖÌõÖÆ×÷Ò»¸ö³¤·½ÌåÈÝÆ÷µÄ¿ò¼Ü£¬ÈôËùÖÆ×÷ÈÝÆ÷µ×ÃæÎªÕý·½ÐΣ¬ÔòÕâ¸öÈÝÆ÷Ìå»ýµÄ×î´óֵΪ8m3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸