精英家教网 > 高中数学 > 题目详情

如图,在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图阴影部分所示,已知,路宽,设灯柱高.

(1)求灯柱的高(用表示);
(2)若灯杆与灯柱所用材料相同,记所用材料长度和为,求关于的函数表达式,并求出的最小值.

(1);(2)当时,取到最小值 m 。

解析试题分析:(1)由已知得           1分
                  2分
中,                  3分

                   4分
中,               5分
                            6分
(2)中,
.....8分
       10分
,当时,
取到最小值 m                     12分
考点:正弦定理的应用,和差倍半的三角函数公式,三角函数的图象和性质。
点评:中档题,本题是综合性较强的一道应用问题,涉及正弦定理的应用,和差倍半的三角函数公式,三角函数的图象和性质。关键是“理解题意、构建函数关系、恒等变形、研究最值”,本题益充分研究图形特点,发现三角形中的边角关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)若的单调递增区间;
(2)若的最大值为4,求a的值;
(3)在(2)的条件下,求满足集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)写出函数的周期;
(2)将函数图象上的所有的点向左平行移动个单位,得到函数的图象,写出函数的表达式,并判断函数的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量a= b=
(1)求及|a+ b|;
(2)若-|a+b|,求的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),该函数所表示的曲线上的一个最高点为,由此最高点到相邻的最低点间曲线与x轴交于点(6,0)。
(1)求函数解析式;
(2)求函数的单调区间;
(3)若,求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)求的对称轴方程;
(2)用“五点法”画出函数在一个周期内的简图;
(3)若,设函数,求的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=cos(2x+)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(I)若
(II)设函数

查看答案和解析>>

同步练习册答案