已知函数f(x)=cos(2x+)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=求b.
(1)最小正周期T==π,f(x)的单调递减区间是[kπ-,kπ+](k∈Z).
(2) b=.
解析试题分析:(1)∵f(x)=cos(2x+)+sin2x=cos2xcos-sin2xsin+
∴最小正周期T==π,令2kπ-≤2x≤2kπ+(k∈Z),得kπ-≤x≤kπ+,k∈Z,
∴f(x)的单调递减区间是[kπ-,kπ+](k∈Z).
(2)由(1)得f(x)=-sin2x+,
∴即故b=.
考点:本题主要考查三角函数的和差倍半公式,正弦定理的应用,三角函数的图象和性质。
点评:中档题,近些年,涉及三角函数、三角形的题目常常出现在高考题中,往往需要综合应用三角公式化简函数,以进一步研究函数的性质。应用正弦定理、余弦定理求边长、角等,有时运用函数方程思想,问题的解决较为方便。
科目:高中数学 来源: 题型:解答题
如图,在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图阴影部分所示,已知,路宽,设灯柱高,.
(1)求灯柱的高(用表示);
(2)若灯杆与灯柱所用材料相同,记所用材料长度和为,求关于的函数表达式,并求出的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知向量,函数.
(1)求的单调区间;
(2)请说出的图象是由的图象经过怎样的变换得到的(说清每一步的变换方法);
(3)当时,求的最大值及取得最大值时的的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线
拟合(,单位为小时,表示气温,单位为摄氏度,,),
现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。
(1)求这条曲线的函数表达式;
(2)求这一天19时整的气温。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com