精英家教网 > 高中数学 > 题目详情

根据市气象站对春季某一天气温变化的数据统计显示,气温变化的分布可以用曲线
拟合(,单位为小时,表示气温,单位为摄氏度,),
现已知这天气温为4至12摄氏度,并得知在凌晨1时整气温最低,下午13时整气温最高。
(1)求这条曲线的函数表达式;
(2)求这一天19时整的气温。

(1);(2)下午19时整的气温为8摄氏度。

解析试题分析:(1)b=(4+12)÷2=8              2分
A=12-8=4                            4分
             6分
所以这条曲线的函数表达式为:      8分
(2)
所以下午19时整的气温为8摄氏度。                   12
考点:本题主要考查正弦型函数的应用。
点评:典型题,确定正弦型函数的解析式,一般靠观察函数图象的最高点、最低点确定A,通过解答计算确定

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=cos(2x+)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=,cosB=求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(α)=
(1)化简f(α)
(2)若cos(+2α)=,求f(-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

锐角中,分别为的三边所对的角,, ,
(1)求角
(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量=(cosx,sinx), ,且x∈[0,].
(1)求
(2)设函数=+,求函数的最值及相应的的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知
(1)求的值;
(2)若的面积为,求的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)判断函数y=f(x)的奇偶性;
(2)求函数y=f(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为第三象限角,
(1)化简   (2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(8分)已知函数.
(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递减区间;
(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。

查看答案和解析>>

同步练习册答案