精英家教网 > 高中数学 > 题目详情

【题目】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)

A.B.C.D.

【答案】C

【解析】

根据题意可知,当该球为底面边长分别为,高为的长方体的外接球时,球的半径取最小值,然后利用公式可计算出球体的表面积.

由题意知,当该球为底面边长分别为,高为的长方体的外接球时,球的半径取最小值,

所以,该球形容器的半径的最小值为

因此,该球形容器的表面积的最小值为.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C伴随圆,已知椭圆C的两个焦点分别是.

1)若椭圆C上一动点满足,求椭圆C及其伴随圆的方程;

2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C伴随圆所得弦长为,求P点的坐标;

3)已知,是否存在ab,使椭圆C伴随圆上的点到过两点的直线的最短距离.若存在,求出ab的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明在区间内有且仅有唯一实根;

(2)记在区间内的实根为,函数,若方程在区间有两不等实根,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】90后”指1990年及以后出生,“80后”指1980-1989年之间出生,“80前”指1979年及以前出生.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是(

A.互联网行业从业人员中90后占一半以上

B.互联网行业中从事技术岗位的人数超过总人数的

C.互联网行业中从事运营岗位的人数90后比80前多

D.互联网行业中从事技术岗位的人数90后比80后多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若数列中存在,其中均为正整数,且),则称数列数列”.

1)若数列的前项和,求证:数列

2)若是首项为1,公比为的等比数列,判断是否是数列,说明理由;

3)若是公差为)的等差数列且),,求证:数列数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在实数集R中,我们定义的大小关系为全体实数排了一个.类似的,我们在平面向量集上也可以定义一个称的关系,记为.定义如下:对于任意两个向量当且仅当。按上述定义的关系,给出如下四个命题:

,则

,则

,则对于任意

对于任意向量,若,则

其中真命题的序号为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,的解集为时,求实数的值;

2)若对任意,存在,使,求实数的范围;

3)集合,若,求实数a的取值范围.

查看答案和解析>>

同步练习册答案