【题目】如图所示,在四棱锥
中,四边形
为矩形,
为等腰三角形,
,平面
平面
,且
,
,
分别为
的中点.
![]()
(1)证明:
平面
;
(2)证明:平面
平面
;
(3)求四棱锥
的体积.
【答案】(1)见解析;(2) 见解析;(3)
.
【解析】试题分析:(1)EF∥平面PAD,根据直线与平面平行的判定定理可知只需证EF与平面PAD内一直线平行,连AC,根据中位线可知EF∥PA,EF平面PAD,PA平面PAD,满足定理所需条件;
(2平面PAD⊥平面ABCD,根据面面垂直的判定定理可知在平面ABCD内一直线与平面PAD垂直,根据面面垂直的性质定理可知CD⊥平面PAD,又CD平面ABCD,满足定理所需条件;
(3)过P作PO⊥AD于O,从而PO⊥平面ABCD,即为四棱锥的高,最后根据棱锥的体积公式求出所求即可.
解:(1)如图所示,
![]()
连接
. ∵四边形
为矩形,且
为
的中点,
∴
也是
的中点. 又
是
的中点,
,
∵
平面
,
平面
.
平面![]()
(2) 证明:∵平面
平面
,
,平面
平面
,
∴
平面
. ∵
平面
,∴平面
平面
.
(3)取
的中点
,连接
. ∵平面
平面
,
为等腰三角形,
∴
平面
,即
为四棱锥
的高. ∵
,∴
. 又
,
∴四棱锥
的体积
.
科目:高中数学 来源: 题型:
【题目】(改编)已知正数数列
的前
项和为
,且满足
;在数列
中,![]()
(1)求数列
和
的通项公式;
(2)设
,数列
的前
项和为
. 若对任意
,存在实数
,使
恒成立,求
的最小值;
(3)记数列
的前
项和为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线![]()
(1)若直线
与圆
相交于两点
,弦长
等于
,求
的值;
(2)已知点
,点
为圆心,若在直线
上存在定点
(异于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标及改常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校高一数学考试后,对
分(含
分)以上的成绩进行统计,其频率分布直方图如图所示,分数在
分的学生人数为
人,
![]()
(1)求这所学校分数在
分的学生人数;
(2)请根据频率发布直方图估计这所学校学生分数在
分的学生的平均成绩;
(3)为进“步了解学生的学习情况,按分层抽样方法从分数在
分和
分的学生中抽出
人,从抽出的学生中选出
人分别做问卷
和问卷
,求
分的学生做问卷
,
分的学生做问卷
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量
(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量
(百斤)与使用某种液体肥料
(千克)之间对应数据为如图所示的折线图.
(1)依据数据的折线图,是否可用线性回归模型拟合
与
的关系?请计算相关系数
并加以说明(精确到0.01).(若
,则线性相关程度很高,可用线性回归模型拟合)
(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量
限制,并有如下关系:
周光照量 |
|
|
|
光照控制仪最多可运行台数 | 3 | 2 | 1 |
若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.
![]()
附:相关系数公式
,参考数据
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= ![]()
(1)求证:数列{
}为等比数列;
(2)若数列{bn}是等差数列,求实数t的值:
(3)若数列{bn}是等差数列,前n项和为Sn , 对任意的n∈N* , 均存在m∈N* , 使得8a12Sn﹣a14n2=16bm成立,求满足条件的所有整数a1的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)当
,
时,求满足
的
的值;
(2)若函数
是定义在
上的奇函数.
①存在
,使得不等式
有解,求实数
的取值范围;
②若函数
满足
,若对任意
且
,不等式
恒成立,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代著名数学经典.其中对勾股定理的论术比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦
尺,弓形高
寸,估算该木材镶嵌在墙中的体积约为( )
(注:1丈=10尺=100寸,
,
)
![]()
A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com