精英家教网 > 高中数学 > 题目详情

【题目】(改编)已知正数数列的前项和为,且满足;在数列中,

(1)求数列的通项公式;

(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值;

(3)记数列的前项和为,证明:.

【答案】(1)(2)(3)见解析

【解析】分析:(1)根据间的关系可得数列为等差数列进而可得通项公式;由两边取倒数后整理得可得等比数列从而可求得.(2)根据题意得到数列的通项公式,再根据错位相减法求得,根据的单调性和不等式可得进而可得的范围.(3)根据及等比数列的求和公式可得

详解:(1)∵

整理得

又当时,,解得

∴数列是首项为,公差为1的等差数列,

两边取倒数得

∴数列是首项为,公比为3的等比数列,

(2)由题意得

②得

易知数列单调递增,

的最小值为

(3)由题意得

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数处有极值,求的值;

(2)若对于任意的上单调递增,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,动点满足,且,则方向上的投影的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧棱底面,底面为长方形,且的中点,作于点.

(1)证明:平面

(2)若三棱锥的体积为,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥V-ABC中,平面VAB平面ABC VAB为等边三角形,ACBCAC=BC=O,M分别为AB,VA的中点。

(I)求证:VB//平面MOC;

II)求证:平面MOC平面VAB

(III)求三棱锥V-ABC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等。

(1)求第三组的频率;

(2)已知实验班学生成绩在第五组,在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;

(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案