【题目】在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=
(1)求边c的长;
(2)求角B的大小.
【答案】
(1)解:∵acosB=3,bcosA=l,∴a× =3,b× =1,
化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.
相加可得:2c2=8c,解得c=4
(2)解:由(1)可得:a2﹣b2=8.
由正弦定理可得: ,
又A﹣B= ,∴A=B+ ,C=π﹣(A+B)= ,可得sinC=sin .
∴a= ,b= .
∴ ﹣16sin2B= ,
∴1﹣ ﹣(1﹣cos2B)= ,即cos2B﹣ = ,
∴﹣2 ═ ,
∴ =0或 =1,B∈ .
解得:B=
【解析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得: ,又A﹣B= ,可得A=B+ ,C= ,可得sinC=sin .代入可得 ﹣16sin2B= ,化简即可得出.
科目:高中数学 来源: 题型:
【题目】(改编)已知正数数列的前项和为,且满足;在数列中,
(1)求数列和的通项公式;
(2)设,数列的前项和为. 若对任意,存在实数,使恒成立,求的最小值;
(3)记数列的前项和为,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
(1)证明函数f ( x )的图象关于轴对称;
(2)判断在上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为,求此时a的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形是直角梯形,,,,,又,,,直线与直线所成的角为.
(1)求证:平面平面;
(2)(文科)求三棱锥的体积.
(理科)求二面角平面角正切值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,直线
(1)若直线与圆相交于两点,弦长等于,求的值;
(2)已知点,点为圆心,若在直线上存在定点(异于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标及改常数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当,时,求满足的的值;
(2)若函数是定义在上的奇函数.
①存在,使得不等式有解,求实数的取值范围;
②若函数满足,若对任意且,不等式恒成立,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com