精英家教网 > 高中数学 > 题目详情
13.若随机变量η的分布列如下:
η-2-10123
P0.10.20.20.30.10.1
则当P(η<x)=0.8时,实数x的取值范围是(1,2].

分析 由随机变量η的分布列的性质能求出实数x的取值范围.

解答 解:由随机变量η的分布列的性质得:
P(η<2)=0.1+0.2+0.2+0.3=0.8,
P(η≤1)=0.1+0.2+0.2+0.3=0.8,
∵P(η<x)=0.8,
∴1<x≤2.
故答案为:(1,2].

点评 本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意随机变量的分布列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.已知集合A满足条件:当p∈A时,总有$\frac{-1}{p+1}$∈A(p≠0且p≠-1),已知2∈A,则集合A的子集的个数至少为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,且满足${S_n}+n=2{a_n}(n∈{N^*})$.
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足${b_n}={a_n}•{log_2}({a_n}+1)(n∈{N^*})$,其前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图是某高三学生七次模拟考试的物理成绩的茎叶图,则该学生物理成绩的平均数和中位数分别为(  )
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+a)-x2-x在x=0处取得极值.求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知角α终边上一点P(2m,1),且$sinα=\frac{1}{3}$.
(1)求实数m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了5次试验,得到数据如下:
零件的个数x(个)23456
加工的时间y(小时)2.23.85.56.57.0
若由此资料知y与x呈线性关系,试求:
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)试预测加工10个零件需要的时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$cos({2014π-\frac{π}{3}})$=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}是一个等差数列,且a2=1,a5=-5.
(1)求{an}的通项公式;
(2)设${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,记数列{log2bn}的前n项和为Tn,求满足Tn≥2016的n的最小值.

查看答案和解析>>

同步练习册答案