分析 (1)利用已知条件求出数列的首项与公差,然后求解通项公式.
(2)求出数列的通项公式,求解数列的和,利用不等式求解n的范围,得到结果即可.
解答 解:(1)设{an}的公差为d,由已知条件有:$\left\{\begin{array}{l}{{a}_{1}+4d=-5}\\{{a}_{1}+d=1}\end{array}\right.$,….(2分)
解得:a1=3,d=-2…(4分)
所以,an=a1+(n-1)d=-2n+5…(6分)
(2)由(1)知:${c_n}=\frac{{5-{a_n}}}{2}=n,{b_n}={2^{c_n}}={2^n}$…(8分)
所以Tn=log2b1+log2b2+…+log2bn=log22+log222+…+log22n
=$1+2+…+n=\frac{n(n+1)}{2}$…(10分)
由Tn≥2016得n(n+1)≥4032,即n≤-64或n≥63…(12分)
所以n的最小值为63…(13分)
点评 本题考查数列递推关系式的应用,数列求和以及数列与不等式的关系,考查计算能力.
科目:高中数学 来源: 题型:填空题
| η | -2 | -1 | 0 | 1 | 2 | 3 |
| P | 0.1 | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 1或-1 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 优、良、中 | 差 | 总计 | |
| 实验班 | 48 | 2 | 50 |
| 对比班 | 38 | 12 | 50 |
| 总计 | 86 | 14 | 100 |
| A. | 有关 | B. | 无关 | C. | 关系不明确 | D. | 以上都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com