精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.
(Ⅰ)证明:∠D=∠E;
(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;
(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.
解答: 证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,
∴∠D=∠CBE,
∵CB=CE,
∴∠E=∠CBE,
∴∠D=∠E;
(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,
∴O在直线MN上,
∵AD不是⊙O的直径,AD的中点为M,
∴OM⊥AD,
∴AD∥BC,
∴∠A=∠CBE,
∵∠CBE=∠E,
∴∠A=∠E,
由(Ⅰ)知,∠D=∠E,
∴△ADE为等边三角形.
点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈[0,+∞),x3+x≥0”的否定是(  )
A、?x∈(-∞,0),x3+x<0
B、?x∈(-∞,0),x3+x≥0
C、?x0∈[0,+∞),x03+x0<0
D、?x0∈[0,+∞),x03+x0≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=(  )
A、
30
3
B、6
C、12
D、7
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=
4
3

(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A、B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2;记ξ=a2-a1,η=b2-b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)C表示事件“ξ与η的取值恰好相等”,求事件C发生的概率P(C);
(3)对(2)中的事件C,
.
C
表示C的对立事件,判断P(C)和P(
.
C
)的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a1=1,an+1=
a
2
n
-2an+2
+b(n∈N*
(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;
(Ⅱ)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别为a,b,c,已知4sin2
A-B
2
+4sinAsinB=2+
2

(Ⅰ)求角C的大小;
(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=
 

查看答案和解析>>

同步练习册答案