精英家教网 > 高中数学 > 题目详情
如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=
4
3

(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?
考点:圆的切线方程,直线与圆的位置关系
专题:直线与圆
分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;
(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.
解答: 解:(1)如图,

过B作BE⊥OC于E,过A作AF⊥BE于F,
∵∠ABC=90°,∠BEC=90°,
∴∠ABF=∠BCE,
tan∠ABF=tan∠BCO=
4
3

设AF=4x(m),则BF=3x(m).
∵∠AOE=∠AFE=∠OEF=90°,
∴OE=AF=4x(m),EF=AO=60(m),
∴BE=(3x+60)m.
tan∠BCO=
4
3

∴CE=
3
4
BE=(
9
4
x+45)
(m).
OC=(4x+
9
4
x+45)
(m).
4x+
9
4
x+45=170

解得:x=20.
∴BE=120m,CE=90m,
则BC=150m;
(2)如图,

设BC与⊙M切于Q,延长QM、CO交于P,
∵∠POM=∠PQC=90°,
∴∠PMO=∠BCO.
设OM=xm,则OP=
4
3
x
m,PM=
5
3
x
m.
∴PC=(
4
3
x+170)
m,PQ=(
16
15
x+136)
m.
设⊙M半径为R,
∴R=MQ=(
16
15
x+136-
5
3
x)
m=(136-
3
5
x)
m.
∵A、O到⊙M上任一点距离不少于80m,
则R-AM≥80,R-OM≥80,
∴136-
3
5
x
-(60-x)≥80,136-
3
5
x
-x≥80.
解得:10≤x≤35.
∴当且仅当x=10时R取到最大值.
∴OM=10m时,保护区面积最大.
点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a
b
c
是非零向量,已知命题p:若
a
b
=0,
b
c
=0,则
a
c
=0;命题q:若
a
b
b
c
,则
a
c
,则下列命题中真命题是(  )
A、p∨q
B、p∧q
C、(¬p)∧(¬q)
D、p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f(x)的图象与函数y=|log4x|的图象的交点共有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y-1≥0
x-y-1≤0
x-3y+3≥0
,则z=x+2y的最大值为(  )
A、8B、7C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.
(Ⅰ)若a=2,b=
5
2
,求cosC的值;
(Ⅱ)若sinAcos2
B
2
+sinBcos2
A
2
=2sinC,且△ABC的面积S=
9
2
sinC,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.
(Ⅰ)证明:∠D=∠E;
(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1,公差为2的等差数列,Sn表示{an}的前n项和.
(Ⅰ)求an及Sn
(Ⅱ)设{bn}是首项为2的等比数列,公比为q满足q2-(a4+1)q+S4=0.求{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量50150100
(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;
(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(ax2+
b
x
6的展开式中x3项的系数为20,则a2+b2的最小值为
 

查看答案和解析>>

同步练习册答案