精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2,那么函数y=f(x)的图象与函数y=|log4x|的图象的交点共有(  )
A、4个B、3个C、2个D、1个
考点:函数的周期性,根的存在性及根的个数判断
专题:作图题
分析:由函数的性质和对称性,作出函数的图象可得交点的个数,可得结论.
解答: 解:由y=f(x)的周期为2,当x∈[-1,1]时,f(x)=x2
可作出函数的图象,由对称可得函数y=|log4x|的图象,
数形结合可得函数图象的交点为4个,
故选:A
点评:本题考查函数图象的交点,涉及函数的周期性和对称性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=ln(e3x+1)+ax是偶函数,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比为q的等比数列,则“q>1”是“{an}”为递增数列的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为(  )
A、
3
3
4
B、
9
3
8
C、
63
32
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=(  )
A、∅B、{2}
C、{0}D、{-2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C于A,B两点,则|AB|=(  )
A、
30
3
B、6
C、12
D、7
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是(  )
A、[-1,1]
B、[-
1
2
1
2
]
C、[-
2
2
]
D、[-
2
2
2
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=
4
3

(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当
|TF|
|PQ|
最小时,求点T的坐标.

查看答案和解析>>

同步练习册答案