精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知4sin2
A-B
2
+4sinAsinB=2+
2

(Ⅰ)求角C的大小;
(Ⅱ)已知b=4,△ABC的面积为6,求边长c的值.
考点:二倍角的余弦,两角和与差的正弦函数,余弦定理
专题:解三角形
分析:(Ⅰ)△ABC中由条件利用二倍角的余弦公式、两角和的余弦公式求得cos(A+B)=-
2
2
,从而得到cosC=
2
2
,由此可得C的值.
(Ⅱ)根据△ABC的面积为6=
1
2
ab•sinC求得a的值,再利用余弦定理求得c=
a2+b2-2ab•cosC
的值.
解答: 解:(Ⅰ)△ABC中,∵4sin2
A-B
2
+4sinAsinB=2+
2
,∴4×
1-cos(A-B)
2
+4sinAsinB=2+
2

∴-2cosAcosB+2sinAsinB=
2
,即 cos(A+B)=-
2
2

∴cosC=
2
2
,∴C=
π
4

(Ⅱ)已知b=4,△ABC的面积为6=
1
2
ab•sinC=
1
2
a×4×
2
2
,∴a=3
2

∴c=
a2+b2-2ab•cosC
=
18+16-2×3
2
×4×
2
2
=
10
点评:本题主要考查二倍角的余弦公式、两角和差的三角公式、余弦定理的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数中,定义域是R且为增函数的是(  )
A、y=e-x
B、y=x
C、y=lnx
D、y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.
(Ⅰ)证明:∠D=∠E;
(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-
3
cos
π
12
t-sin
π
12
t,t∈[0,24).
(Ⅰ)求实验室这一天上午8时的温度;
(Ⅱ)求实验室这一天的最大温差.

查看答案和解析>>

科目:高中数学 来源: 题型:

海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区ABC
数量50150100
(Ⅰ)求这6件样品来自A,B,C各地区商品的数量;
(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,若对任意的正整数n,总存在正整数m,使得Sn=am,则称{an}是“H数列”.
(1)若数列{an}的前n项和为Sn=2n(n∈N*),证明:{an}是“H数列”;
(2)设{an}是等差数列,其首项a1=1,公差d<0,若{an}是“H数列”,求d的值;
(3)证明:对任意的等差数列{an},总存在两个“H数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.
(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?
(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下五个命题:
①对于任意的a>0,b>0,都有algb=blga成立;
②直线y=x•tanα+b的倾斜角等于α;
③与两条异面直线都平行且距离相等的平面有且只有一个;
④在平面内,如果将单位向量的起点移到同一个点,那么终点的轨迹是一个半径为1的圆;
⑤已知函数y=f(x),若存在常数M>0,使|f(x)|<M•|x|对定义域内的任意x均成立,则称f(x)为“倍约束函数”.对于二次函数f(x)=x2+1,该函数是倍约束函数.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案