分析 (1)根据函数的极值,求出m的值,得到f(x)的表达式,从而求出f(x)的单调区间即可;
(2)分别根据导数和二次函数的性质求出其最小值和最大值得到关于a的不等式,解出即可.
解答 解:(1)f′(x)=ex+m-$\frac{1}{x}$,若x=1是函数f(x)的极值点,
则f′(1)=e1+m-1=0,解得:m=-1,
故f(x)=ex-1-lnx,f′(x)=ex-1-$\frac{1}{x}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
故f(x)在(0,1)递减,在(1,+∞)递增;
(2)f'(x)=ex+xex=(1+x)ex,
当x>-1时,f'(x)>0,函数递增;
当x<-1时,f'(x)<0,函数递减,
所以当x=-1时,f(x)取得极小值即最小值 f(-1)=-$\frac{1}{e}$
函数 g(x)的最大值为a,若?x1,x2∈R使得f(x1)≤g(x2)成立.
则有g(x)的最大值大于等于f(x)的最小值,
即a≥-$\frac{1}{e}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题、属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{7}{5}$ | B. | -$\frac{1}{2}$ | C. | -$\sqrt{2}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2] | B. | [-2,2] | C. | (-2,2] | D. | (-∞,-2) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com