精英家教网 > 高中数学 > 题目详情
9.-510°是第三象限角.

分析 把角写成k×360°+α,0°≤α<360°,k∈z 的形式,根据α的终边位置,做出判断.

解答 解:∵-510°=-2×360°+210°,
∴-510°与210°终边相同,故角-510°在第三象限,
故答案为:三

点评 本题主要考查终边相同的角的定义和表示方法,象限角、象限界角的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$=(1,1),$\frac{{\overrightarrow{BA}}}{{|{\overrightarrow{BA}}|}}$+$\frac{{\overrightarrow{BC}}}{{|{\overrightarrow{BC}}|}$=$\frac{{\sqrt{3}\overrightarrow{BD}}}{{\overrightarrow{|{BD}|}}}$,则四边形ABCD的面积为(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知函数f(x)=ex+m-lnx,若x=1是函数f(x)的极值点,求m的值,并讨论f(x)的单调性;
(2)已知f(x)=xex,g(x)=-(x+1)2+a,若?x1,x2∈[-2,0],使得f(x2)≤g(x1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列幂函数中过点(0,0),(1,1)的奇函数是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x5C.y=x-3D.y=x${\;}^{-\frac{1}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a2=b2+c2-bc,则∠A=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1、F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点,过点F1且垂直于x轴的直线交双曲线C于P、Q两点,若△F2PQ为正三角形,则双曲线C的离心率e的值为(  )
A.$\sqrt{3}$B.2C.3D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ax-a-x(a>0且a≠1)
(1)若f(1)<0,求a的取值范围;
(2)若f(1)=$\frac{3}{2}$,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.给出下列命题:
①存在实数x,使$sinx+cosx=\frac{3}{2}$;
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数y=sin2x的图象向左平移$\frac{π}{4}$个单位,得到函数$y=sin(2x+\frac{π}{4})$的图象;
④定义在R上的奇函数f(x)满足f(x+2)=f(-x),当0≤x≤1时,f(x)=2x,
则f(2015)=-2.
其中正确命题是④(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sin(ωx+φ)(ω>0)的图象关于直线$x=\frac{π}{32}$对称且$f({-\frac{π}{32}})=0$,如果存在实数x0,使得对任意的x都有$f({x_0})≤f(x)≤f({{x_0}+\frac{π}{8}})$,则ω的最小值是(  )
A.4B.6C.8D.12

查看答案和解析>>

同步练习册答案