精英家教网 > 高中数学 > 题目详情
18.如图,若$\widehat{ACB}$是半径为r的圆的弓形,弦AB长为$\sqrt{2}$r,C为劣弧AB上的一点,CD⊥AB于D,当点C在什么位置时,△ACD的面积最大,并求这个最大面积.

分析 先表示出△ACD的面积,再用基本不等式求出最大面积.

解答 解:∵$\widehat{ACB}$是半径为r的圆的弓形,弦AB长为$\sqrt{2}$r,
∴∠AOB=90°.
连接OC,设∠CAB=α,则∠BOC=2α,∠AOC=90°-2α,
∴AC=2rsin(45°-α),
∴AD=ACcosα,
∴△ACD的面积S=$\frac{1}{2}×AC×AD×sinα$=r2sin2(45°-α)sin2α
=$\frac{{r}^{2}}{2}×(1-sin2α)sin2α$≤$\frac{{r}^{2}}{2}×(\frac{1}{2})^{2}$=$\frac{{r}^{2}}{8}$.
当且仅当1-sin2α=sin2α,即sin2α=$\frac{1}{2}$,
∴α=$\frac{π}{12}$时,△ACD的面积最大,最大面积为$\frac{{r}^{2}}{8}$.

点评 本题考查三角形面积的计算,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{AB}$=(2,1),$\overrightarrow{BC}$=(-1,k),$\overrightarrow{CD}$=(3,4).
(Ⅰ)若$\overrightarrow{AD}$=(4,6),求k的值;
(Ⅱ)若A,C,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式1+$\frac{k}{x-1}$≤0的解集是[-2,1),则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知过点A(-2,m)和点B(m,4)的直线l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3,若l1∥l2,l2⊥l3,则m+n=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某经销商计划销售一款新型的空气净化器,经市场凋研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=$\frac{1260}{x+1}$;若x大于或等于180,则销售为零;当20≤x≤180时.q(x)=a-b$\sqrt{x}$(a,b为实常数).
(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设数列{an}的前n项和为Sn,对一切n∈N+,点(n,$\frac{{S}_{n}}{n}$)均在函数f(x)=3x+2的图象上.
(1)求a1,a2及数列{an}的通项公式;
(2)解不等式f(n)≥Sn-22.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-4$\overrightarrow{b}$|=2$\sqrt{7}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在正五边形ABCDE中,已知$\overrightarrow{AB}$•$\overrightarrow{AD}$=8,则该正五边形的边长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.停车扬上有3辆小车,2辆摩托车,1辆自行车,为美观环境,要求同类车必须相邻,则不同的停放车辆的方法有(  )
A.12种B.36种C.48种D.72种

查看答案和解析>>

同步练习册答案