10£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2£¬|$\overrightarrow{a}$-4$\overrightarrow{b}$|=2$\sqrt{7}$£¬Ôò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®1D£®-1

·ÖÎö ÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄÐÔÖÊ£ºÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬ÔÙÓÉ$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰ¸ÅÄ¼ÆËã¼´¿ÉÇóµÃ

½â´ð ½â£º¡ß|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2£¬|$\overrightarrow{a}$-4$\overrightarrow{b}$|=2$\sqrt{7}$£¬
¡à|$\overrightarrow{a}$-4$\overrightarrow{b}$|2=|$\overrightarrow{a}$|2+16|$\overrightarrow{b}$|2-8$\overrightarrow{a}$•$\overrightarrow{b}$=28£¬
¡à$\overrightarrow{a}$•$\overrightarrow{b}$=-1£¬
¡àÔò$\overrightarrow{a}$ÔÚ$\overrightarrow{b}$·½ÏòÉϵÄͶӰΪ$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=-1£¬
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÏòÁ¿µÄÊýÁ¿»ýµÄ¶¨ÒåºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÏòÁ¿µÄƽ·½¼´ÎªÄ£µÄƽ·½£¬ÒÔ¼°ÏòÁ¿µÄͶӰµÄÇ󷨣¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÖ±Ïßl1£º£¨m+3£©x+£¨m-1£©y-5=0Óël2£º£¨m-1£©x+£¨3m+9£©y-1=»¥Ïà´¹Ö±£¬ÔòʵÊýmµÄֵΪ1»ò-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªcosA=$\frac{4}{5}$£¬b=5c£®
£¨1£©ÇósinC£»
£¨2£©Èô¡÷ABCµÄÃæ»ýS=$\frac{3}{2}$sinBsinC£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬Èô$\widehat{ACB}$Êǰ뾶ΪrµÄÔ²µÄ¹­ÐΣ¬ÏÒAB³¤Îª$\sqrt{2}$r£¬CΪÁÓ»¡ABÉϵÄÒ»µã£¬CD¡ÍABÓÚD£¬µ±µãCÔÚʲôλÖÃʱ£¬¡÷ACDµÄÃæ»ý×î´ó£¬²¢ÇóÕâ¸ö×î´óÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬{an}ÖеIJ¿·ÖÏî×é³ÉµÄÊýÁÐa${\;}_{{k}_{1}}$£¬a${\;}_{{k}_{2}}$£¬a${\;}_{{k}_{3}}$£¬¡­£¬a${\;}_{{k}_{n}}$£¬¡­Ç¡ºÃΪµÈ±ÈÊýÁУ¬ÆäÖÐk1=3£¬k2=5£¬k3=17£¬ÇóÊýÁÐ{kn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒa1+a2=12£¬9a32=a2•a6£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3a1+log3a2+¡­log3an£¬ÇóÊýÁÐ{$\frac{1}{{b}_{n}}$}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªa£¼0£¬µãA£¨a+$\frac{1}{a}$£¬a-$\frac{1}{a}$£©£¬µãB£¨3£¬0£©£¬ÔòA£¬BÁ½µã¼äµÄ¾àÀë|AB|µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®6B£®5C£®4D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªtanA+$\frac{1}{tanA}$=m£¨A¡Ùk¦Ð£¬A$¡Ùk¦Ð+\frac{¦Ð}{2}$£¬k¡ÊZ£©£¬Ôòsin2AµÈÓÚ£¨¡¡¡¡£©
A£®$\frac{1}{{m}^{2}}$B£®$\frac{1}{m}$C£®2mD£®$\frac{2}{m}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬¶ÔÓÚÈÎÒâµÄn¡ÊN*¶¼ÓÐSn+1-3Sn-1=0£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èôbn•an=n£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸