精英家教网 > 高中数学 > 题目详情
5.已知等差数列{an}的公差d≠0,{an}中的部分项组成的数列a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$,…,a${\;}_{{k}_{n}}$,…恰好为等比数列,其中k1=3,k2=5,k3=17,求数列{kn}的通项公式.

分析 设等差数列{an}的首项为a1,从而可得a${\;}_{{k}_{1}}$=a1+(k1-1)d=a1+2d,a${\;}_{{k}_{2}}$=a1+(k2-1)d=a1+4d,a${\;}_{{k}_{3}}$=a1+(k3-1)d=a1+16d,结合等比数列的性质可得(a1+4d)2=(a1+2d)(a1+16d),从而解得a1=-$\frac{8}{5}$d,从而判断出数列{5kn-13}是以15-13=2为首项,以6为公比的等比数列,从而解得.

解答 解:设等差数列{an}的首项为a1
则a${\;}_{{k}_{1}}$=a1+(k1-1)d=a1+2d,
a${\;}_{{k}_{2}}$=a1+(k2-1)d=a1+4d,
a${\;}_{{k}_{3}}$=a1+(k3-1)d=a1+16d,
∵数列a${\;}_{{k}_{1}}$,a${\;}_{{k}_{2}}$,a${\;}_{{k}_{3}}$,…,a${\;}_{{k}_{n}}$,…恰好为等比数列,
∴(a1+4d)2=(a1+2d)(a1+16d),
解得,a1=-$\frac{8}{5}$d,
故a${\;}_{{k}_{n}}$=a1+(kn-1)d=$\frac{5{k}_{n}-13}{5}$d,
验证可知$\frac{{a}_{{k}_{2}}}{{a}_{{k}_{1}}}$=$\frac{\frac{12}{5}d}{\frac{2}{5}d}$=6,
故数列{5kn-13}是以15-13=2为首项,以6为公比的等比数列,
故5kn-13=2•6n-1
故kn=$\frac{2•{6}^{n-1}+13}{5}$.

点评 本题考查了等比数列与等差数列的性质的判断与应用,同时考查了整体思想与构造法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设f(x)=asin2x+bcos2x,且满足a,b∈R,ab≠0,且f($\frac{π}{6}-x$)=f($\frac{π}{6}+x$),则下列说法正确的是(  )
A.|f($\frac{7π}{10}$)|<|f($\frac{π}{5}$)|
B.f(x)是奇函数
C.f(x)的单调递增区间是[k$π+\frac{π}{6},kπ+\frac{2}{3}π$](k∈Z)
D.a=$\sqrt{3}$b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知奇函数f(x)是R上的单调函数,若关于x的方程f(x2)+f(k-x)=0在[0,1]无实数解,则实数k的取值范围是{k|k<0,或 k>$\frac{1}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某经销商计划销售一款新型的空气净化器,经市场凋研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=$\frac{1260}{x+1}$;若x大于或等于180,则销售为零;当20≤x≤180时.q(x)=a-b$\sqrt{x}$(a,b为实常数).
(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求和:3+2×32+3×33+4×34+…+n•3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$-4$\overrightarrow{b}$|=2$\sqrt{7}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某商店销售某种商品,成本函数为C(x)=5x+200(元),该商品的价格函数为P(x)=10-0.01x(元/件)(其中x为商品的销售量,单位:件),问如何定价使利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足a1=1,an+1=an+2n,则a2011=4042111.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,A,B,C所对的边分别为a,b,c,已知sinC=$\frac{\sqrt{10}}{4}$.
(1)若a+b=5,求△ABC面积的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的长.

查看答案和解析>>

同步练习册答案