精英家教网 > 高中数学 > 题目详情
7.在正五边形ABCDE中,已知$\overrightarrow{AB}$•$\overrightarrow{AD}$=8,则该正五边形的边长为4.

分析 设出边长,利用向量的数量积公式化简求解即可.

解答 解:设正五边形ABCDE的边长为a.$|\overrightarrow{AD}|cos<\overrightarrow{AB},\overrightarrow{AD}>$=$|\overrightarrow{AO}|=\frac{1}{2}|\overrightarrow{AB}|$.
∵$\overrightarrow{AB}$•$\overrightarrow{AD}$=8,可得:|$\overrightarrow{AB}$|•|$\overrightarrow{AD}$|cos$<\overrightarrow{AB},\overrightarrow{AD}>$=8,即$\frac{1}{2}|\overrightarrow{AB}||\overrightarrow{AB}|=8$,即$\frac{1}{2}{a}^{2}=8$,解得a=4.
故答案为:4.

点评 本题考查平面向量的数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.等比数列{an}前n项和为Sn满足$\underset{lim}{n→∞}$Sn=$\frac{1}{{a}_{1}}$,求a1的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,若$\widehat{ACB}$是半径为r的圆的弓形,弦AB长为$\sqrt{2}$r,C为劣弧AB上的一点,CD⊥AB于D,当点C在什么位置时,△ACD的面积最大,并求这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知等比数列{an}的各项均为正数,且a1+a2=12,9a32=a2•a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…log3an,求数列{$\frac{1}{{b}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知a<0,点A(a+$\frac{1}{a}$,a-$\frac{1}{a}$),点B(3,0),则A,B两点间的距离|AB|的最小值是(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,点D在BC边上且$\overrightarrow{AD}$=λ($\frac{c}{|c|sinB}+\frac{b}{|b|sinC}$)(λ∈R),则(  )
A.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\overrightarrow{b}$B.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{2}$$\overrightarrow{b}$D.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知tanA+$\frac{1}{tanA}$=m(A≠kπ,A$≠kπ+\frac{π}{2}$,k∈Z),则sin2A等于(  )
A.$\frac{1}{{m}^{2}}$B.$\frac{1}{m}$C.2mD.$\frac{2}{m}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.从装有4个黑球与1个红球的口袋中,有放回地任取一球,连取3次,则取到的球中恰好有2次红球的概率为$\frac{12}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A={y|y=$\sqrt{l{n}^{2}x-2lnx+3}$,x≥1},B={x||lnx|≥1},则A∩B=(  )
A.($\sqrt{2}$,+∞)B.(1,$\frac{1}{e}$)C.[e,+∞)D.(e,+∞)

查看答案和解析>>

同步练习册答案