【题目】在平面直角坐标系
中,直线l的参数方程为
(t为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.曲线C的极坐标方程为
.
(1)求直线l的普通方程及曲线C的直角坐标方程;
(2)设点
,直线l与曲线C相交于A,B两点,求
的值.
科目:高中数学 来源: 题型:
【题目】已知动圆
在圆
:
外部且与圆
相切,同时还在圆
:
内部与圆
相切.
(1)求动圆圆心
的轨迹方程;
(2)记(1)中求出的轨迹为
,
与
轴的两个交点分别为
、
,
是
上异于
、
的动点,又直线
与
轴交于点
,直线
、
分别交直线
于
、
两点,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
为正整数,各项均为正整数的数列
定义如下:
,
(1)若
,写出
,
,
;
(2)求证:数列
单调递增的充要条件是
为偶数;
(3)若
为奇数,是否存在
满足
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,且
与
交于
,
两点,已知点
的极坐标为
.
(1)求曲线
的普通方程和直线
的直角坐标方程,并求
的值;
(2)若矩形
内接于曲线
且四边与坐标轴平行,求其周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E为MC的中点,则下列结论不正确的是( )
![]()
A. 平面
平面ABN B. ![]()
C. 平面
平面AMN D. 平面
平面AMN
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,过点
且斜率为
的直线
与椭圆
交于
两点,线段
的中点为
为坐标原点.
(1)证明:点
在
轴的右侧;
(2)设线段
的垂直平分线与
轴、
轴分别相交于点
.若
与
的面积相等,求直线
的斜率![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的各项都是正数,其前
项和为
,且满足:
,
,其中
,常数![]()
.
(1)求证:
是一个定值;
(2)若数列
是一个周期数列(存在正整数
,使得对任意
,都有
成立,则称
为周期数列,
为它的一个周期),求该数列的最小周期;
(3)若数列
是各项均为有理数的等差数列,
(
),问:数列
中的所有项是否都是数列
中的项?若是,请说明理由;若不是,请举出反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com