【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数
的不足近似值和过剩近似值分别为
和
,则
是
的更为精确的不足近似值或过剩近似值.我们知道
,若令
,则第一次用“调日法”后得
是
的更为精确的过剩近似值,即
,若每次都取最简分数,那么第四次用“调日法”后可得
的近似分数为( )
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】近年来,共享单车在我国各城市迅猛发展,为人们的出行提供了便利,但也给城市的交通管理带来了一些困难,为掌握共享单车在
省的发展情况,某调查机构从该省抽取了5个城市,并统计了共享单车的
指标
和
指标
,数据如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
| 2 | 4 | 5 | 6 | 8 |
| 3 | 4 | 4 | 4 | 5 |
(1)试求
与
间的相关系数
,并说明
与
是否具有较强的线性相关关系(若
,则认为
与
具有较强的线性相关关系,否则认为没有较强的线性相关关系).
(2)建立
关于
的回归方程,并预测当
指标为7时,
指标的估计值.
(3)若某城市的共享单车
指标
在区间
的右侧,则认为该城市共享单车数量过多,对城市的交通管理有较大的影响交通管理部门将进行治理,直至
指标
在区间
内现已知
省某城市共享单车的
指标为13,则该城市的交通管理部门是否需要进行治理?试说明理由.
参考公式:回归直线
中斜率和截距的最小二乘估计分别为
,,
相关系数![]()
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的一个焦点与抛物线
的焦点相同,
,
为椭圆的左、右焦点,M为椭圆上任意一点,若
的面积最大值为1.
(1)求椭圆C的方程;
(2)设不过原点的直线l:
与椭圆C交于不同的两点A、B,若直线l的斜率是直线
、
斜率的等比中项,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的极坐标方程是
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,曲线C的参数方程是
,(
为参数).
(1)求直线
被曲线C截得的弦长;
(2)从极点作曲线C的弦,求各弦中点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,满足
,
.数列
满足
,
,且
.
(1)求数列
和
的通项公式;
(2)若
,数列
的前
项和为
,对任意的
,都有
,求实数
的取值范围;
(3)是否存在正整数
,
,使
,
,
(
)成等差数列,若存在,求出所有满足条件的
,
,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数f(x)=
,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间
上,f(x)>0恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知函数f(x)=-2lnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)为f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆C:
(
) 经过点
,设椭圆C的左顶点为A,右焦点为F,右准线于x轴交于点M,且F为线段AM的中点,
![]()
(1)求椭圆的标准方程;
(2)若过点A的直线l与椭圆C交于另一点P(P在x轴上方),直线PF与椭圆C相交于另一点Q,且直线l与OQ垂直,求直线PQ的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com