【题目】如图,在平面直角坐标系xOy中,已知椭圆C:
(
) 经过点
,设椭圆C的左顶点为A,右焦点为F,右准线于x轴交于点M,且F为线段AM的中点,
![]()
(1)求椭圆的标准方程;
(2)若过点A的直线l与椭圆C交于另一点P(P在x轴上方),直线PF与椭圆C相交于另一点Q,且直线l与OQ垂直,求直线PQ的斜率.
【答案】(1)
;(2)![]()
【解析】
(1)推导出
,从而
,进而
.
,由点
在椭圆上,得到
,再由
,得到
,由此能求出椭圆的标准方程.
(2)设直线
的方程为:
,
,代入椭圆方程,得
,由
,得
,
,推导出直线
的方程为:
,由
,得直线
的方程为:
,两直线联立解得:
,
,再由
在椭圆上,能求出直线
的斜率.
解:(1)因为
,
,
,且
为
的中点,
所以
,则
.
即
,所以
.![]()
因为点
在椭圆上,
所以
,
又因为
,所以
,则
,
.
所以椭圆的标准方程为
.
(2)由题意直线
的斜率必存在且大于0,
设直线
的方程为:
,![]()
代入椭圆方程并化简得:
,
因为
,
得
,
,
当
时,
的斜率不存在,此时
不符合题意.
当
时,直线
的方程为:
,
因为
,所以直线
的方程为:
,
两直线联立解得:
,
,因为
在椭圆上,
所以
,化简得:
,即
,
因为
,所以
,
此时
.
直线
的斜率为
.
![]()
科目:高中数学 来源: 题型:
【题目】我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数
的不足近似值和过剩近似值分别为
和
,则
是
的更为精确的不足近似值或过剩近似值.我们知道
,若令
,则第一次用“调日法”后得
是
的更为精确的过剩近似值,即
,若每次都取最简分数,那么第四次用“调日法”后可得
的近似分数为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
.已知
分别是
的中点.将
沿
折起,使
到
的位置且二面角
的大小是60°,连接
,如图:
![]()
(1)证明:平面
平面![]()
(2)求平面
与平面
所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)
(c≠0),其图象的对称中心为(
,
),现已知f(x)
,数列{an}的通项公式为an=f(
)(n∈N+),则此数列前2020项的和为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四边形ABED中,AB//DE,AB
BE,点C在AB上,且AB
CD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE
.
![]()
(1)求证:平面PBC
平面DEBC;
(2)求三棱锥P-EBC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
![]()
以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记
表示2台机器三年内共需更换的易损零件数,
表示购买2台机器的同时购买的易损零件数.
(Ⅰ)求
的分布列;
(Ⅱ)若要求
,确定
的最小值;
(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在
与
之中选其一,应选用哪个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,过点
作倾斜角为
的直线
,以原点
为极点,
轴非负半轴为极轴建立极坐标系,曲线
的极坐标方程为
,将曲线
上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线
,直线
与曲线
交于不同的两点
.
(1)求直线
的参数方程和曲线
的普通方程;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2016年1月1日全面实施二孩政策以来,为了了解生二孩意愿与年龄段是否有关,某市选取“75后”和“80后”两个年龄段的已婚妇女作为调查对象,进行了问卷调查,共调查了40名“80后”,40名“75后”,其中调查的“80后”有10名不愿意生二孩,其余的全部愿意生二孩;调查的“75后”有5人不愿意生二孩,其余的全部愿意生二孩.
(1)根据以上数据完成下列
列联表;
年龄段 | 不愿意 | 愿意 | 合计 |
“80后” | |||
“75后” | |||
合计 |
(2)根据
列联表,能否在犯错误的概率不超过0.05的前提下,认为“生二孩意愿与年龄段有关”?请说明理由.
参考公式:
(其中
)
附表:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com